Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells - Processus d'activation sélective par transfert d'énergie uni-électronique ou radiatif Accéder directement au contenu
Article Dans Une Revue Biomedical Materials Année : 2022

Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells

Résumé

Human-induced pluripotent stem cells (hiPSCs) can be self-renewed for many generations on nanofibrous substrates. Herein, a casting method is developed to replicate the nanofibrous morphology into a thin layer of polymethylsiloxane (PDMS). The template is obtained by electrospinning and chemical crosslinking of gelatin nanofibers on a glass slide. The replicas of the template are surface-functionalized by gelatin and used for propagation of hiPSCs over tenth generations. The performance of the propagated hiPSCs is checked by immunofluorescence imaging, flowcytometry, and RT-PCR, confirming the practicability of this method. The results are also compared to those obtained using electrospun nanofiber substrates. Inherently, the PDMS replica is of low stiffness and can be reproduced easily. Compared to other patterning techniques, casting is more flexible and cost-effective, suggesting that this method might find applications in cell-based assays that rely on stringent consideration of both substrate stiffness and surface morphology.
Fichier principal
Vignette du fichier
Nanocasting of fibrous morphology.pdf (761.03 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03601217 , version 1 (08-03-2022)

Identifiants

Citer

Sisi Li, Momoko Yoshioka, Junjun Li, Li Liu, Shixin Ye, et al.. Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomedical Materials, 2022, 17 (2), pp.025014. ⟨10.1088/1748-605X/ac51b8⟩. ⟨hal-03601217⟩
18 Consultations
115 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More