A Single Approach to Decide Chase Termination on Linear Existential Rules

Michel Leclère 1 Marie-Laure Mugnier 1 Michaël Thomazo 2 Federico Ulliana 1
1 GRAPHIK - Graphs for Inferences on Knowledge
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
2 VALDA - Value from Data
DI-ENS - Département d'informatique de l'École normale supérieure, Inria de Paris
Abstract : Existential rules, long known as tuple-generating dependencies in database theory , have been intensively studied in the last decade as a powerful formalism to represent ontological knowledge in the context of ontology-based query answering. A knowledge base is then composed of an instance that contains incomplete data and a set of existential rules, and answers to queries are logically entailed from the knowledge base. This brought again to light the fundamental chase tool, and its different variants that have been proposed in the literature. It is well-known that the problem of determining, given a chase variant and a set of existential rules, whether the chase will halt on any instance, is undecidable. Hence, a crucial issue is whether it becomes decidable for known subclasses of existential rules. In this work, we consider linear existential rules, a simple yet important subclass of ex-istential rules that generalizes inclusion dependencies. We show the decidability of the all instance chase termination problem on linear rules for three main chase variants, namely semi-oblivious, restricted and core chase. To obtain these results, we introduce a novel approach based on so-called derivation trees and a single notion of forbidden pattern. Besides the theoretical interest of a unified approach and new proofs, we provide the first positive decidability results concerning the termination of the restricted chase, proving that chase termination on linear existential rules is decidable for both versions of the problem: Does every fair chase sequence terminate? Does some fair chase sequence terminate?
Type de document :
Rapport
[Research Report] arXiv:1810.02132. 2018
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01892375
Contributeur : Marie-Laure Mugnier <>
Soumis le : mercredi 10 octobre 2018 - 15:37:33
Dernière modification le : mercredi 12 décembre 2018 - 14:38:02

Fichier

main-arxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01892375, version 1

Citation

Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, Federico Ulliana. A Single Approach to Decide Chase Termination on Linear Existential Rules. [Research Report] arXiv:1810.02132. 2018. 〈lirmm-01892375〉

Partager

Métriques

Consultations de la notice

25

Téléchargements de fichiers

36