Variational and thermodynamically consistent finite element discretization for heat conducting viscous fluids - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année :

Variational and thermodynamically consistent finite element discretization for heat conducting viscous fluids

, (1, 2)
1
2

Résumé

Respecting the laws of thermodynamics is crucial for ensuring that numerical simulations of dynamical systems deliver physically relevant results. In this paper, we construct a structure-preserving and thermodynamically consistent finite element method and time-stepping scheme for heat conducting viscous fluids. The method is deduced by discretizing a variational formulation for nonequilibrium thermodynamics that extends Hamilton's principle for fluids to systems with irreversible processes. The resulting scheme preserves the balance of energy and mass to machine precision, as well as the second law of thermodynamics, both at the spatially and temporally discrete levels. The method is shown to apply both with insulated and prescribed heat flux boundary conditions, as well as with prescribed temperature boundary conditions. We illustrate the properties of the scheme with the Rayleigh-B\'enard thermal convection. While the focus is on heat conducting viscous fluids, the proposed discrete variational framework paves the way to a systematic construction of thermodynamically consistent discretizations of continuum systems.

Dates et versions

hal-03872636 , version 1 (25-11-2022)

Identifiants

Citer

Evan S. Gawlik, François Gay-Balmaz. Variational and thermodynamically consistent finite element discretization for heat conducting viscous fluids. 2022. ⟨hal-03872636⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More