Rapid three-dimensional quantification of voxel-wise collagen fiber orientation - ENS - École normale supérieure Accéder directement au contenu
Article Dans Une Revue Biomedical optics express Année : 2015

Rapid three-dimensional quantification of voxel-wise collagen fiber orientation

Zhiyi Liu
  • Fonction : Auteur
Kyle P Quinn
  • Fonction : Auteur
Lucia Speroni
  • Fonction : Auteur
Lisa Arendt
  • Fonction : Auteur
Charlotte Kuperwasser
  • Fonction : Auteur
Irene Georgakoudi
  • Fonction : Auteur
  • PersonId : 951956


Defining fiber orientation at each voxel within a 3D biomedical image stack is potentially useful for a variety of applications, including cancer, wound healing and tissue regeneration. Current methods are typically computationally intensive or inaccurate. Herein, we present a 3D weighted orientation vector summation algorithm, which is a generalization of a previously reported 2D vector summation technique aimed at quantifying collagen fiber orientations simultaneously at each voxel of an image stack. As a result, voxel-wise fiber orientation information with 4° to 5° accuracy can be determined, and the computational time required to analyze a typical stack with the size of 512x512x100 voxels is less than 5 min. Thus, this technique enables the practical extraction of voxel-specific orientation data for characterizing structural anisotropy in 3D specimens. As examples, we use this approach to characterize the fiber organization in an excised mouse mammary gland and a 3D breast tissue model.
Fichier principal
Vignette du fichier
boe-6-7-2294.pdf (6.64 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03574893 , version 1 (15-02-2022)



Zhiyi Liu, Kyle P Quinn, Lucia Speroni, Lisa Arendt, Charlotte Kuperwasser, et al.. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation. Biomedical optics express, 2015, 6 (7), pp.2294. ⟨10.1364/BOE.6.002294⟩. ⟨hal-03574893⟩
23 Consultations
11 Téléchargements



Gmail Facebook Twitter LinkedIn More