Accéder directement au contenu Accéder directement à la navigation
Chapitre d'ouvrage

Phenomenology of Incompleteness: from Formal Deductions to Mathematics and Physics

Abstract : This paper is divided into two parts. The first proposes a philosophical frame and it "uses" for this a recent book on a phenomenological approach to the foundations of mathematics. Gödel's 1931 theorem and his subsequent philosophical reflections have a major role in discussing this perspective and we will develop our views along the lines of the book (and further on). The first part will also hint to the connections with some results in Mathematical physics, in particular with Poincaré's unpredictability (three-body) theorem, as an opening towards the rest of the paper. As a matter of fact, the second part deals with the "incompleteness" phenomenon in Quantum physics, a wording due to Einstein in a famous joint paper of 1935, still now an issue under discussion for many. Similarities and differences w.r. to the logical notion of incompleteness will be highlighted. A constructivist approach to knowledge, both in mathematics and in physics, underlies our attempted "unified" understanding of these apparently unrelated theoretical issues 1 .
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées
Contributeur : Uar 3608 République Des Savoirs Connectez-vous pour contacter le contributeur
Soumis le : jeudi 12 août 2021 - 13:28:10
Dernière modification le : mercredi 12 janvier 2022 - 03:37:28
Archivage à long terme le : : samedi 13 novembre 2021 - 18:37:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-03319456, version 1



Francis Bailly, Giuseppe Longo. Phenomenology of Incompleteness: from Formal Deductions to Mathematics and Physics. Lupacchini, Rossella; Corsi, Giovanna. Deduction, Computation, Experiment: Exploring the Effectiveness of Proof, Springer, 2008, 978-8847007833. ⟨hal-03319456⟩



Les métriques sont temporairement indisponibles