Accéder directement au contenu Accéder directement à la navigation
Chapitre d'ouvrage

The Constructed Objectivity of Mathematics and the Cognitive Subject

Abstract : Mathematics is engendered in conjunction with other forms of knowledge, physics in particular. It is a “genealogy of concepts” (Riemann), that stems from our active reconstruction of the world. Mathematics organizes space and time. It stabilizes notions and concepts as no other language, while isolating by them a few intelligible fragments of “reality” at the phenomenal level. Thus an epistemological analysis of mathematics is proposed, as a foundation that departs from and complements the logico-formal approaches: Mathematics is grounded in a formation of sense, of a congnitive and historical nature, which preceeds the explicit formulation of axioms and rules. The genesis of some conceptual invariants will be sketched (numbers, continua, infinity, proofs, etc.). From these, categories as structural invariants (objects) and “invariant preserving maps” (morphisms, functors) are derived, in a reflective equilibrium of theories that parallels our endeavour to gain knowledge of the physical world.
Liste complète des métadonnées
Contributeur : Uar 3608 République Des Savoirs Connectez-vous pour contacter le contributeur
Soumis le : mercredi 11 août 2021 - 11:43:17
Dernière modification le : mercredi 12 janvier 2022 - 03:37:28
Archivage à long terme le : : vendredi 12 novembre 2021 - 19:16:25


Fichiers produits par l'(les) auteur(s)




Giuseppe Longo. The Constructed Objectivity of Mathematics and the Cognitive Subject. Mioara Mugur-Schächter; Alwyn van der Merwe. Quantum Mechanics, Mathematics, Cognition and Action - Proposals for a Formalized Epistemology, 129, Springer, pp.433-463, 2002, Fundamental Theories of Physics 978-9048162192. ⟨10.1007/0-306-48144-8_14⟩. ⟨hal-03318906⟩



Les métriques sont temporairement indisponibles