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the conceptual world of mathematics is so foreign to what the in-
tuitive continuum presents to us that the demand for coincidence be-
tween the two must be dismissed as absurd. Nevertheless, those abstract
schemata which supply us with mathematics must also underlie the exact
science of domains of objects in which continua play a role.
Hermann Weyl, Das Continuum, 1918.

It is a difficult task for a mathematician to talk at the end of a Husserl colloquium
that has been so strongly oriented towards philosophy. The richness and relevance of
Husserl’s work in so many domains between philosophy and scientific knowledge make
it difficult to find time, among the varied and interesting themes of this colloquium,
to discuss the problems of the foundations of mathematics — one of Husserl’s main
preoccupations. But Dag Follesdal, when discussing Kurt Godel’s and Hermann Weyl’s
conceptions of the continuum, did mention two important aspects of Husserl’s influence
on the thinking of mathematicians.

I will approach the discussion of the continuum from the perspective of trying to
obtain a foundation for ‘mathematical knowledge’ as part of our way of interpreting
and reconstructing the world, and not just as a ‘purely logical’, (meta)mathematical
investigation of Mathematics. Nonetheless, some references to technical work in Pure
Mathematics and Mathematical Logic will be inevitable.

The starting point for this article are comments about the continuum made by
Hermann Weyl in the book Das Kontinuum [Weyl, 1918]. Weyl, a mathematician of
great stature, was strongly influenced by Husserl in his numerous foundational and

philosophical reflections. In particular the ‘phenomenology’ of the continuum is at
the heart of the most interesting, and modern, observations in [Weyl,1918]. Other
important references for these notes will be the articles by René Thom, Jean Petitot
and Jacques Bouveresse in the book Le Labyrinthe du Continu, as well as the reflections
of Wittgenstein (in different places, to be cited in the text) and in [Chatelet, 1993].

*In Naturalizing Phenomenology (section on Mathematics and Formal Methods). Invited Pa-
per, (Petitot et al eds.) Stanford University Press, 1999.



1 The Intuition

Our intuiltion about the continuum is buill from common or stable elements, from in-
variants which emerge from a plurality of acts of experience: the perception of time, of
movement, of a line extended, of a trace of a pencil...

Time. Weyl considers “time as a fundamental continuum”, and the “phenomenal
time” of Husserl and Bergson as “conscious experience” of the present which coexists
with “memory of the instant gone”. Its measure is based on the comparison of temporal
segments [Weyl, 1918; p.109-111]. St. Augustine in his Confessions, which Weyl
unfortunately does not cite, has the same point of view. Time is a primary notion,
independent of movement. The measuring of time happens in the memory, because on
remembering we compare the temporal segment of a short syllable, “which is not there
anymore”, to a long one [St. Augustine, 401; Lib. XI]'. Contrary to Aristotle’s opinion
in Physics, for St. Augustine movement is not a primary notion: it is time that permits
us to describe it as velocity (in modern terms, as a function of space and time).

Many times St. Augustine and Weyl describe the intuition of time as a continuous
flux: “river ... experience in transformation”. For Weyl phenomenological time is a
duration without points, made out of parts that link together, that superimpose over
each other, because “this is now, but meanwhile now is no more” [Weyl, 1918; p. 111].

Movement. We can ‘see’ the continuum in the movement of an object. For Aristotle
time presupposes movement: the regular movement of celestial bodies, of the Sun
around the Earth, gives us the measure and even the concept of time: the continuity
of movement describes that of time. Galileo, Newton and Einstein construct the same
hierarchy: from the movement of bodies to time. The continuum which we derive
reminds us again of flux, the passage from the power to the act: but the direct vision
of movement has no need to appeal to memory. Weyl then proposes an interesting
distinction: the continuous line which is there, the “tracks of the tramway” (an image
also dear to René Thom [Thom, 1990]) and the curve, a potential path, “which a
pedestrian walks on... the trajectory of a point in movement”. When this point “finds
itself in a determined position, it coincides with a determined point of the plane, without
being itself this point of the plane”. “In movement, the continuum of points on a
trajectory recovers in a continuous monotone fashion the continuum of instants” [Weyl,
1918; ch.IT par. 8]. But this is merely a simple superposition: for Weyl the temporal
continuum does not have points, the instants are merely “transitions”, the present is
only possible due to the simultaneous perception of the past and of the future.

The String extended. A thread, a string extended (another of Thom’s images), is
another experience of the continuum. The chemist or the physicist will tell us that this
line is composed of fibers, of molecules. But, if we observe it and discuss it from the
point of view of its continuity, it is its macroscopic reality which informs and contributes
to our intuition of the continuum. The string extended cannot have jumps nor holes:

its tension cannot support the lack of a small part, not even a point.

The Pencil on a sheet. This is the most common experience of the continuum: no
one entertains discourse or conscious reflection of the continuum before having drawn
lines on pieces of paper thousands of times. The experience is neat: a set of black
points transforms the curve into a line, in the sense of Weyl. The points are collected
in the trace, which makes their individuality disappear. These points become evident

again, as isolated points, when two lines cross each other.



Cauchy in his first demonstration of the Theorem of the Mean Value (see par.2
below) does not go further than the intuition of the continuum that comes from strings

and curves traced by a pencil and their crossings.

Viewing the traces of pencil over paper suggests from where our intellectual experience
of points — isolated and without dimensions — could have come: from the crossing of
two lines. The points are not part of our intuition of the continuum, clearly at least
not from the temporal continuum, as Weyl tells us, but also not part of the spatial
continuum, as Wittgenstein explains. For Wittgenstein, a curve is a law, it is not
made out of points; “the intersection point of two lines is not the common element of
two classes of points, but the intersection of two laws” [Wittgenstein,1964; quoted by
Bouveresse, 1992]. If the line or the curve of the movement has only one dimension,
that given by the law that describes it, then we are forced to conceive of a point, as the
crossing of two lines, as devoid of dimension. This is also suggested by two extended
lines that just touch each other, by pencil traces that cross each other on a paper sheet.
The point without dimension is a conceptual construction, a necessary consequence of
a line as a one dimensional law. 1t is a posterior construction, specific to Set Theory,
which ‘puts together’ the points to reconstruct the line. From this construction comes
the set-theoretical inversion of priorities — the continuum as a set of points — an
inversion rejected, for different reasons, by Weyl, Wittgenstein and Thom.

2 The Mathematics

One of the most important theorems about the mathematical continuum is intuitively
obvious: if on a plan a continuous line has one of its extremities in one side of a right
line and the other on the other side of the same right line, then the continuous line
cuts through the right line.

Theorem of the Mean Value If the function f(z) is continuous with respect to the vari-
able © between a and b, and if we call ¢ an intermediary value between f(a) and f(b),
then we can alway satisfy the equation f(z) = ¢, for at least one value of x between a
and b.

Proof (Cauchy, 1821) It is enough to see that the curve which has equation y = f(z)
will meet one or more times the line y = ¢, inside the interval between a and b; now, it
is evident that this will be what will happen when the hypotheses are met. QED

This proof is not a proof. It is not that the reasoning is faulty, it is the definitions
that are missing: Cauchy does not have (yet) a rigourous notion of continuity, nor
of a curve (Weierstrass). He appeals to the evidence of threads and traces of pencil.
Fortunately the theorem in Analysis is true, we can demonstrate it rigourously. Poinsot,
in a course in the Ecole Polytechnique in 1815, believed he had demonstrated, in a
similar fashion, that every continuous curve is differentiable everywhere, on the left or
on the right. The counterexample is well-known?.

Actually, at the beginning of the XIX century, the ‘intuition’ about the continuum
in Mathematics needed to be made precise. The Ether of Physics was also in the
scientific spirit of everyone, with the homogeneity of a perfect continuum. There was
a choice to be made: in one side Leibnitz infinitesimals, on the other the limits, the
continuity in terms of ‘for all ¢, there exists a §’ (Cauchy, Weiertrass).




What is the invariant, the stable among the many experiences of the world that
refer to the continum? Certainly a invariance of scale: all the little bits of time, of
a line, even of a string ... keep the same properties that of a longer one (with the
perception of continuity of an extended string, we don’t see the atoms). In general, the

magnifying glass does not change our intuition of the continuum. Or more formally
all homothethies preserve the structure of the continuum. Then, the absence of jumps
and of holes: no stop to jump further (the jumps), no abyss in which Zeno’s arrows
can be lost (the lacunas or absence of individual points).

There we have the formidable invention of Cantor and Dedekind. It will make
people forget Leibnitz’s ideas until the invention of Nonstandard Analysis, a century
later, because of its conceptual simplicity, its precision, its constructivity. Take the
totally ordered set of the integers, N: 0 the rationals () as fractions of integers. The set
@ is also totally ordered and has already some interesting properties for the continuum :
it is in effect a dense order (between any two rationals, there is always a third rational),
hence invariant by homothethy and without jumps. But ¢ has an uncountable number
of holes or lacunas. Add on all the limits, in the sense of Cauchy, or, what turns out
to be the same, define a real number as the set of rationals that are smaller than itself
(a Dedekind cut). This is the set-theoretical construction of Cantor-Dedekind which
is the standard formalisation of the continuum, that of the real line R of Analysis. It
satisfies the invariance of scale, it has no jumps or lacunas. A curve in space will be
continuous, if it is described by a law, which does not introduce jumps nor lacunas and
is parametrised by this line®.

2.1 The Impredicative Definition of the Real Line

There is still a problem with the construction we have sketched: if a real number is the
limit of all the rationals that precede it, we are using and we are preparing the ground
for ‘circular definitions’.

Firstly, there is always an infinity of (positive) rationals smaller than whichever
(positive) real: hence we need to use, when defining it, the collection N of all the
integers, in its totality. And the classical definition of this totality has the following
structure: N is the smallest set that contains zero and which if it contains n it contains
n + 1. Said in a different way, N is the intersection of all sets that contain zero and
that are closed under the successor operation. But N has also this property: to define
it using the phrase ‘all the sets that..” we quantify over a collection that contains N
itself. The defeniens uses the defeniendum.

Secondly, once the real line has been constructed, whenever we define, for example,
least upper bounds or greatest lower bounds, we do it once again using the quantifi-
cations which can make reference at what is being defined (the collection of the upper
bounds or of the lower bounds includes the ‘definiendum’, the smallest or greatest
bound, which is also an upper or a lower bound).

Poincaré and Weyl, who were well aware of these problems in Analysis, gave a
rigouous definition of ‘impredicative notion’ in mathematics . Poincaré observes that
these definitions are not always contradictory, but they always present the dangers
of circularity. Lebesgue, in 1902, built the General Theory of Integration over an
essentially impredicative definition (the Lebesgue measure). The question was hotly
discussed at the beginning of the century, in particular under the impulse of Russell.



We will hint to the consequences of this discussion in Weyl’s books.

Does this circularity separate the Cantor-Dedekind construction and hence Anal-
ysis, from the ‘intuition of the continuum’? Clearly not. Already in Aristotle we
notice a circularity in the discourse on the continuum: the continuum is presented as
one “totality already formed, which, on its own, gives meaning to its components ”
[Panza,1992]°.

The same way the present time of St. Augustine and Weyl is circular: none of its
parts (past, present, future) has meaning without mutual reference to each other; time
itself is the simultaneous perception of the past, the present and of the future. The
present time that it is not there anymore, it is past, or that it is not there yet, it is
future, and that we only understand when inserted in the whole of time or within a
segment of time. The same is true about the continuity of the string or the line, which
is not conceived of points, but globally, or at least through a ‘enlarged locality’. The
impredicativity of Analysis proposes a possible formalisation of this intuitive circularity,
in particular of phenomenological time; it is one of its expressive richness, another point
of contact between intuition and mathematics.

This way the division between time and Mathematical Analysis, which disturbs
Weyl (the absence of points in the phenomenological time in comparison with the
points which form the real line) is in part, but only in part, reduced: the real points
can be, a posteriori, isolated, but their definition and their Analysis, a la Cantor-
Dedekind, requires ‘a global look’ at the continuum, the same way the intuition of
the present requires that of the past and of the future. In Das Kontinuum Weyl is
worried, as most mathematicians at the beginning of the century, about the necessity
of rigour in the mathematical definitions: too many paradoxes have disrupted the
foundational work, the definitions tinged with circularity are suspected. For this reason,
he tries a novel approach, which avoids impredicativity, as it is based on a predicative
approach of Mathematical Analysis. This attempt will not affect his concrete work in
Mathematics (see [Chand.,1987]) nor his futher foundational reflections (see the next
footnote). Weyl is probably missing, in that temporary restriction of his mathematical
tools, a common element between Analysis and the intuition of (temporal) continuum,
of which he particularly cares. However, given his mathematical talent, the few pages
he sketched on this point will be considered a paradigm by other logicians that, later
on, will continue to prefer the stratified certitudes to the expressive circularities of
impredicativity (see [Feferman,1988]). But the challenge of his book is primarily his
insatisfaction with the mathematical analysis of the temporal continuum and in his
critique of the artificial unity of the space-time, a very important (and very criticable)
acquisition of the Mathematical Physics of his time®. Time, due to its irreversibility,
to the nature of its continuum, is very different from space, as many thinkers, from St.
Augustin to Weyl, have made the effort to tell us.

3 Between Intuition and Mathematics

Cantor and Dedekind have proposed a precise mathematical formalisation of the intu-
itive continuum, with at least three points of contact with our intuitive demands: the
invariance of scale, the absence of jumps and of holes. This formalisation is based on
very clear ‘construction principles’ : the sequence of natural numbers, quotients, limits



of convergent sequences. Because iteration gives us the integers (we will come back to
this point) and quotients give us the rationals; a convergence criterium for a sequence
given by a rule gives us a method to construct the reals. A convergence criterium for a
sequence, even if the sequence is not known a priori, indicates, without ambiguity, by
retracing the interval, what we define as ‘the real limit’ of this sequence”.

The theoretical import of this construction is massive and its conceptual force rekin-
dles our vision of the world. Because not only Mathematics and its structures, it is our
knowledge that is not stratified. Once a language and a expressive geometry intervene
with the description of the world, they enrich it with forms, which acquire an objective
autonomy. This is the basis and the result of the intersubjectivity, it emerges from the
world, it is full of history and because of this, it is not absolute nor arbitrary. But above
all this language, this geomelry will influence our original intuition, for a dynamic game
is then played. This game goes from our intuitions to their formalisations and when
it returns to the the intuition, it modifies it. A ‘classical’ mathematician does not see
a trace of a pencil, without seeing the continuum of R, which parametrizes the trace
as a curve. He will talk about the continuity of this trace, of space, of time, of move-
ment, directly in terms of his analytical language. Also the trace over the sheet, the
comtemplation of movement are instruments for his own reflection, ‘eyes for the mind’
for the construction that he is trying to master, Analysis. And, before any proofs, he
starts to use his intuition over the mental spaces of Analysis and Geometry, trying to
understand them as he understands the string, as if they were realities of the same

level®. From this comes the usual platonic ontology of most mathematicians. It is a
formidable help to formulating conjectures and even proofs: Cauchy has ‘seen’ the right
Theorem of the Mean Value. René Thom also has ‘lived’ for a long time amongst the
continuous and differentiable varieties. His deep immersion into this conceptual space,
his mathematical genius, have allowed him to ‘see’; first, and classify the singulari-
ties (the catastrophes), an exceptional mathematical (and cognitive) performance. For
him, as for many mathematicians of the continuum, “the Continuum precedes ontolog-
ically the discrete”, for the latter is merely an “accident coming out of the continuum
background”,“a broken line” ... “the archetypical continuum is a space that has the
property of a perfect qualitative homogeneity”, hence it gives us a vision, more than
a logico-mathematical construction [Thom, 1992]. Actually Thom goes further “any
demonstration is a revelation of a novel structure, where the elements solidify the intu-
ition and where the reasoning reconstructs the progressive genesis” [Thom,1990;p.560].
An intuition, non emergent from the world, but observation of the universe of Mathe-
matics where the “form of existence is without doubt different from the concrete and
material existence of the world, but nevertheless subtly and deeply linked to the ob-
jective existence.” For this reason “the mathematician must have the courage of his
inner convictions; he will affirm that the a mathematical structures have an existence
independent of the mind that has conceived them; ... the platonist hypothesis ... is
...the most natural and philosophically the most economical” [Thom,1990;p.560]. Dana
Scott more prudent said to this author: “it does no harm”.

The advantages of the platonic hypothesis in the ‘linguistic synthesis’ for the every-
day communication amongst mathematicians are enormous, due to the efficacy of the
objective signification that it can give to the language and to the crucial ‘scribbles in
the blackboard’. But the foundational and philosophical drawbacks that it entails are
also very important, for all transcendent ontology disguises the historical and cognitive



process, the project of intellectual construction, of which Mathematics is rich, and in
particular the ‘proof principles’ and the ‘construction principles’ which are at the basis
of its nature.

3.1 Other Constructions of the Continuum

Discussing the continuum we have tried to describe how the mathematical intuition
is built in our relation with the world, by “these acts of experience ... within which
we live as human beings” [Weyl,1918;p113]. On the basis of these life experiences,
we propose descriptions and deductions, we make wagers, not arbitrary, but full of
history and of intersubjectivity, of invariance within a plurality of experiences. Those
wagers, organised in mathematical theories, are our linguistic (Algebra, Analysis) and
spatial formalisations (Geometry). The ‘transcendental objectivity’ (in the Husserlian
sense) but not transcendent, which emerges by these intellectual constructions and
which modifies itself and enriches itself in history, will give (mathematical) forms to
the world: forms that are not ‘already there’ and which will also modify and enrich our
original intuitions.

These proposals, these constructions, which aim to an objectivity not absolute
anymore, but strong, full of intellectual and cognitive paths, of theorems, of intersub-
jective communication, are not unique. In the case of the continuum, Leibniz had
proposed another construction, in an way too incomplete to resist the very robust
construction of Cauchy, Weierstrass, Cantor and Dedekind. It was necessary to wait
for the Mathematical Logic of this century, so that an alternative proposal became a
new Mathematical Analysis, Non-Standard Analysis?. The non-standard analyst de-
scribes the continuum differently: despite a number of conservative extension results
for the new theories with respect to Standard Analysis (they prove the same theorems,
within the standard fragment of the language), his real numbers like ‘halos of inte-
gers’ are a different thing altogether and it is possible to demonstrate new theorems.
The ordered set of non-standard numbers, the new real line, loses, for example, the
invariance of scale (Hartong), one of the strong invariants of our different views of
the continuum, see [Barreau&Hartong,1989]. The non-standard analysist hence view
the geometrical space, the physical world in effect, in a different way; this change of
theory and of intuition of the mathematical continuum seems to offer new insights in
Mathematical Physics (see [Cutland,1988] and the articles by Lobry, Lutz and Reeb
in [Salanskis&Sinanceur,1992]; [Salanskis,1991] proposes an epistemological analysis of
the non-standard continuum).

Thom himself does not believe that the standard analysis, at the heart of his work,
gives a definitive representation of the continuum: “it seems to me premature to impose
to the continuum a structure as rigid as R as an additive group, and I would prefer
to give it more flexibility” [Thom,1992]. Dissatisfied by the arithmetical (and logical)
generativity of the (non-)standard continuum, exactly like Weyl was by the treatment
of the “continuous flux” and of the phenomenal time as a set of real points, he will
suggest new ideas, trying “to identify the reals as the numbers in foliation rotation
over the torus”. One obtains this way “more interesting classes of irrationals” and one
can study the “mysteries” of the point and of the “perfect continuum”, of which “we
can only say that it is an unpronounceable mystique” [Thom,1992]. His mathematical
audacity sketches here a new conceptual construction, which goes beyond the invariants



that have guided the continuum conceived by Leibniz, Cantor-Dedekind or the one from
non-standard analysis. This conception is built from his mathematical work experience,
which is comparable, for this author, for its force and its evidence, to the experience
of the world.

But the intuition that is constructed in the praxis of Mathematics is different from
that which emerges directly from our relation with the physical world, even if they
do get mixed up in our ‘working mathematicians’ minds. The first one, in what con-
cerns standard analysis for example, is based on the Cantor-Dedekind construction
and the work derived from that in more than a century. If Cauchy in his ‘proof’ of the
Theorem of the Mean Value had made reference to well-defined notions of curve and
continuity, if he could have appealed to the rigorous mathematical intuition of the stan-
dard reals, built over the correct definitions given some decades later, then his proof
would have been a proof. He would have used the ‘informal rigor’ of the practice of
mathematics. In a somewhat different understanding of this notion from Kreisel’s, the
informal rigor is based on observations ‘from above and from a distance’ of definitions
and constructions that we know to be potentially rigorous and then by the development
of an informal deduction: the rigor stays more in the precision of the notions than
of the deductions. This method is so typical of work in Mathematics, so much based
on ‘intuition’, because it is buill on the history and the practice of Mathematics. This
mathematical intuition, and the informal rigor which is grounded on it, is not the one
of the ‘man in the street’ (even less the one of the paleolithical man): all the training
in Mathematics, from the student to the researcher, is to acquire this informal rigor,
difficult balance between intuition and formal rigor, which permits a demonstration
and its comprehensible expression.

The identification of these two kinds of intuition, the one of the trained mathemati-
cian and the other developed only in everyday life, into one single ‘pure intuition’, is
the origin of the difficulties to developing a cognitive analysis, not purely psychological,
not purely logical of Mathematics. For the analysis of mathematical intuition, which is
not given, which is not an absolute, but it is built in the interplay of acts of experience,
language, design and formalization, is actually part of the analysis of Mathematics as
a form of knowledge. Moreover, the confusion between different levels or kinds of intu-
ition, from the common sense one to the one in the experienced mathematician, beyond
history, gives a comparable or identical level to the objectivity from the physical world
and to the objectivity from Mathematics: in both cases the intuition of evidence will
be the same, as well as the one of invariants and stabilities. One intuition ‘pure and
unique’ forces us to believe in the unicity of the theory possible; it makes difficult a
comparative analysis of different theories, or of wagers of representation, which are
proposed to treat mathematically the world and our intuitions of it and which are full
of history and of questioning, as the intuition of the continuum.

4 From Mathematics to Logic

Take the subsets, the parts, of the set N of the integers, P(N). If two subsets A and
B are strictly included into each other they differ by a finite or infinite subset, but,
we would say, in ‘a discrete way’, by successive jumps: it is integers, well separated
ones, that A is lacking to get to B. | hope the reader can ‘see’ this in his head, using



his mathematical intuition. But, this is not really the case: P(N) contains chains
(totally ordered sets) with the same type of order as R (i.e. the kind of order of the
continuum: dense, without jumps or holes). The proof is easy: @) is countable, choose
a bijective enumeration of ¢ by N and associate to each real number the integers
which enumerate its Dedekind cut. Then you have a bijection (an order isomorphism)
between R and a chain inside P(N). Our construction principles have given us very
rich structures, R and P(N), so rich that they escape the intuitive naive observation.
Actually these structures do not exist: the property that we just ‘saw’ is not there, it
is not explained as we explain a property of the world, we have demonstrated it, as we
have built these structures, as conceptual constructions. The well-trained analyst can
short-circuit this proof and see immediately the continuous chain, for the Dedekind cuts
are as concrete for him as this table (to paraphrase Godel). In any case, to construct
the chain in P(N), we have made some ‘choices’. We have presented () as a set of
pairs (fractions) of the integers N. Each rational corresponds actually to an infinity
of equivalent fractions; hence to give a bijective enumeration of ) we must enumerate
N x N (easy) and choose a representant for each set of equivalent fractions. This choice
is effective, for these equivalence classes are decidable — and the Theory of Recursively
Enumerable Sets (and Recursive Functions) realises the Axiom of Choice'®. This axiom,
this principle, is a construction, or allows a construction, that of the “set of choices”,
composed of one element for each set in the collection considered (see the note). Hence
it is a construction principle for using a specific mathematical structure, it allows the

construction of new structures. But it is also a principle of proof: once presented ‘in
abstracto’ (that is, at formal level, with no intended domain of interpretation, as if it
held for all collection of sets, without any hypothesis on decidability nor on order that
allowed the choice of the ‘first element’ of each set) it becomes a purely mathematical or
logical stake: further than the finite (or decidable or ordered) it completely cuts itself off
from the practices of life and it acquires a level of abstraction that makes it independent
of the ‘poor’ , ‘without structure’ formalisations of mathematics (the formal set theories,

see paragraph 5). Nonetheless the trained mathematician uses it everyday, without fear
of error, knowing without knowing that he’s using a powerful proof principle, which only
the specific structure of certain constructions makes applicable. And he confuses his
cognitive performance, the wvision of the conceptual structures of his daily intellectual
practices, with a mystical ontology.

Let us try again: cardinality is in first approximation the number of elements of a
set. Cantor has shown, by a simple diagonal construction that R has more elements
than N, the integers. The reader clearly sees the real line and the ‘integer points’ well
isolated and regularly spaced. The rationals () are dense and hence give an approxima-
tion for each real number. But they are as numerous as the integers. Is it true that if
a subset of R is larger than N or () then it has necessarily the cardinality of R?7 What
does say the observation about this object universe? What says the pure intuition?
Nothing. But still the reals are there, God at least must know them all, with their
subsets.

To answer these questions it is necessary to make precise the ‘frame of the set
theoretical construction’, to make precise our ‘basic principles’: if we consider the reals
inside the universe of construtibles of Gdédel we say yes, if we consider the reals inside
the set theoretical universe of Cohen we say no. We do not know which framework God
prefers. The question, from Cantor to Frege, Gédel, Cohen and D.Scott has been a



key issue in Mathematical logic: it is the challenge of the Continuum Hypothesis (HC).
We will refer again to it in section 5.2; but before that we must discuss ‘iterations’ and
‘horizons’.

5 Construction Principles and Proof Principles

One of the ‘theoretical situations’ that gives ‘certainty’ or ‘structural solidity’ in the
work of mathematicians and logicians is the joining of different methods, which con-
verge to the same construction. When very different ideas with technical and cultural
origins very much apart can be translated into each other, possibly up to isomor-
phisms, we are sure that we have in our hands a significant construction. For these
connections, with different degrees of proximity, sometimes just embeddings without
isomorphisms, are to be found in all interesting domains of Mathematics. That is the
unity of Mathematics: these bridges, these translations, this to-and-from, these intel-
lectual percourses through rough tracks, sometimes in parallel, which may arrive by
shortcuts to well-known valleys. The audacious explorers (constructors!) will be re-
joined by others, which proposed totally different paths, with (sometimes) independent
goals.

The relationship between Intuitionistic Logic and Theory of Categories (by means
of the Theory of Types) gives one of the more interesting and elegant examples of
this kind of correspondence. A few remarks on this subject will allow us to clarify
the notions of ‘proof principle and construction principle’, to mention a categorical

semantics of impredicative definitions and of the notion of ‘variation’, which are the
heart of the analysis of the continuum.

After that, we will briefly go back to the Axiom of Choice and the Continuum
Hypothesis as logical axioms and as mathematical constructions.

5.1 Conjunction, Quantification and Products

In Intuitionistic Logic!!we say to have a ‘proof” of a conjunction A A B (in a unique,
canonical way), if we have a proof of A, a proof of B and the possibility of reconstructing
from a proof of A A B a proof of A and one of B (we have projections). Let A and B
be two sets, two spaces, any two mathematical structures: what we have just defined is
simply the cartesian product A X B of A and B with its projections, which associate to
each element, or proof of A x B, one element or proof of A and one of B. More precisely
it is the Category Theory version of the cartesian product, the product invented by
the geometers, which thanks to its categorical generalisation gives us also the product
of two topological spaces, two partial orders, of any two mathematical structures ... in
their categories (of structures). We have already gone to constructions, having started
with proofs: A X B is the categorical (in fact geometric) semantics (interpretation) of
the intuitionist conjunction A A B.

In Mathematics, in Algebra, in Geometry when we have a construction, we usually
have another, its dual, for free. Category Theory says that it is enough to reverse
all the arrows, that is the direction of all morphisms or functions between objects, to
obtain the dual of a given construction. In the case of the product, we reverse the
direction of the projections. This way we obtain the categorical coproduct, which can
be constructed in several categories. This corresponds to the notion of intuitionistic
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disjunction: the famous intuitionistic disjunction A V B, of which we have a proof if
and only if we have a proof of A or a proof of B and we know of which one the proof is.
In particular, for this notion of disjunction, AV =A (A or not A) is not demonstrable:
to prove it, it is necessary to have a proof of A or a proof of = A, hence the ‘excluded
third option’ is not valid. More formally, write S F C' to mean ‘S demonstrates C’;
then, in full generality,

SFAVBifand onlyif SFAor AFB

and hence the theoretic ‘or’ (V) corresponds to the metatheoretic ‘or’. In a classical sys-
tem this beautiful intuitionist symmetry theory/metatheory is lost, for the implication
from left to right is false. Hence this intuitionistic ‘or’ is not so odd: it is simply the
dual of a very familiar geometric construction, the cartesian product (and it transfers
into the theory the metatheoretical disjunction).

We can also show that the intuitionist implication can be interpreted as the ex-
ponential objects in the categories closed under this construction. The exponential
object thus defined represents the set of morphisms or functions between two objects
of a category and, in the intuitionistic systems, a proof of A — B is a morphism, a
function — a term or calculation in Type Theory — from A to B.

But Mathematics needs variables. The syntactic entity represented by x,y,...
which is an individual variable in Mathematical Logic, is a projection in Category
Theory. When it appears within a formula, this generalises to the notion of fibration,
a categorical way of talking about wvariation. Thus the universal quantification Yz €
B.A(z) (for all z in B we have A(z)) corresponds to a fibred product (or pullback), a
notion well-established in Geometry, a kind of ‘generalised cartesian product’: actually
universal quantification generalises conjunction, for A(z) must be true at the same time
for any « in B. This is an infinite conjunction or a limit: very informally it corresponds
to A(b) AN A(b') A ... for all elements b,b',...in B.

How do we understand the existentencial quantification 3z € B.A(z) (there exists a
@ in B such that A(z) holds), always in the first-order case (that is when the variables
are individual ones) 7 The seminal observation of Lawvere is that this is nothing but the
dual of the product above, with respect ot the operation of substitution (formally Vz
and Jz correspond, respectively, to right and left adjoints to the substitution functor).
Thus, once more, syntactic principles from Logic, indeed Frege’s I order universal
quantification, nicely corresponds to actual constructions in geometry.

Matters get more complicated when we consider variables over propositions or sets
(we will write them with capital letters X,Y,...). Why this extra work? When dis-
cussing the continuum from the logical point of view this is inevitable: the real numbers
of Analysis are sets of integers, the numerical codes of (equivalence classes of) Cauchy
sequences of rationals. For this reason the Arithmetic of second order, with variables
ranging over propositions is considered the logical counterpart of Cantor-Dedekind’s
Analysis. Here comes the difficulty: the variables do not vary over a set or predicate,
as in Yo € B.A(z), but instead they vary inside the collection Prop of all the sets or
propositions, including VX € Prop.A(X), the proposition that we are trying to define,
for VX € Prop.A(X) is in Prop. Danger, danger: impredicativity got us. No problem:
we will sort things out in two different ways. Through a normalisation theorem (we
will see this in paragraph 5.3) and through a construction, that does not depend on
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the logic, and which has its origin in Geometry (the Grothendieck topos and the ideas
of Lawvere). Inside these geometrical categories we can give a structural meaning, as
a closure property of certain categories, to this stake that worries many logicians (but
very few mathematicians and computer scientists). Briefly the variation will happen
now over a category and not simply over an object of a category, as in the first order
case, for we need to give meaning to the variables over propositions and each propo-
sition is an object; thus it is necessary that this category be closed under products
indexed over itself. All this gives a new structure for the variation and a strong closure
property. The circularity of the impredicative definitions becomes then a theorem, the
closure of certain categories under generalised products, whose origin is geometrical
(see [Asperti&Longo, 1991]).

The only difficulty is that the construction cannot be done inside a classical Set
Theory ([Reynolds, 1984]), instead one needs an intuitionistic environment ([Pitts,
1987],[Longo, Moggi, 1991]). Once again, but this is complicated, the geometrical
symmetry between ¥.X and 94X can be represented as left and right adjunctions, with
respect to a functor that also generalises the cartesian product, the diagonal functor.

Here we have a game of principles of proof and principles of construction that have
very different origins and motivations. We understand ones through the others and this
way we obtain one of these conceptual chains that are the kernel of the mathematical
construction.

We have used implicitly in this sketch of a mathematical semantics of proofs, some
constructions that take us back to infinity and the continuum. We have touched the
continuum in two ways: the semantics of the notion of variation or change, which is one
of the elements of the phenomenon of the continuum, and the impredicative definitions.
But there is more than this: there are also passages to the limit, which are implicit in
the categorical constructions of the product. The universal quantification Vo € B.A(x)
is simply an infinite conjunction, a limit. We then go back to infinity, to limits and to
the continuum in Mathematics and Logic.

5.2 Limits and Closings of the Horizon

Despite the supporting references to systems of Intuitionstic Logic, the reader should
not suppose that the author is a ‘devoted intuitionist” as we can still find them (and
of great scientifique value) in Northern Europe. The notion of conceptual construction
discussed here is the one which emerges from the practice of Mathematics and it is
more general than the one of Brouwer or as formalised by Heyting. The interest for
Intuitionism is first mathematical: these systems have a correspondence in Geometry
(Topos Theory) which is hard to find for other logical systems. But the interest in
Intuitionism is also methodological, because of the emphasis it puts on the notion of
construction'?. But we should not make a limiting religion of our extraordinary creative
possibilities, when it comes to mathematical constructions. Infinity for example has
been part of our practices of language and of our perception of space for a long time,
too long for us to try and expel it from our mathematical practice or from the logical
theoretizations.

Consider the sequence 1,2,3,... that we can iterate without any reason to stop.
Its closure, on the horizon, which we call w, is it not as clear and certain as the finite
iteration? Nowadays with computers that do iteration so well, we can observe what
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happens after iteration more easily than in the past: the finitist engagement in Logic
this century is in the origin of (the development of) these formidable digital machines
that have changed our daily life'®. This finitist effort should remain with the machines!
We can continue, as mathematicians have done forever, using this construction, this
going to the limit, without fear of losing our “unshakeable certainties”. And we can
state with no problem:

w+lw+2,...,wtw=wx?2

But now the playing is easy, the construction evident:

WX 2,wx3,. .., ww=w?

Why not carry on? The rule is there:

So long as we have a persisting iteration, we, human beings, we get bored. This is
one of the differences between us and the computers: boredom. Computers don’t get
bored: iteration is their strongest point. We, once we have understood, once we have
detected a regularity, we look further afield, we see the horizon, w or even w®, as we
see the image of poplars in [Chatelet, 1993;ch.2.2]: we enclose into one single look
the range that repeats itself in the direction of the horizon and we project it over
an actual infinity. This is a human experience which is gradually made explicit in
concepts through the centuries; maybe it has its origins in the Oriental religions, as
Weyl would have it!4; in any case, this experience has developed because of and within
the mathematical practice, where religious commitment and platonist ontology can mix
up and justify a conceptual construction, as with Galileo, Newton or Cantor. But what
happens if we continue the iteration of the exponentials? We have w to the power w
to the power w ... on the limit, in the horizon this will be simply w to the power w, w
times. This ordinal we call ¢, it gives the smallest solution to the equation z = w®.
Do we need a transfinite ontology to describe and use this construction? No, a simple
principle of going to the limit, to the horizon, suffices, if we have an explicit iteration
(as in this case) or a criterium of convergence (as in the case of Cauchy sequences).
The ordinal w is not in the world, it is not a convention, nor merely a symbol: it
synthetises a principle of construction, a “disciplined gesture” to paraphrase Chatelet,
rich of history. Its rigorous use in Mathematics had given it a meaning, has inserted
it inside operative contexts, has shown us its different points of view, briefly has found
it a place within the conceptual network we call Mathematics. This gesture reiterated
gives us ..w X 2,... w?,..w*... €. And whatever follows!®.

The utilisation of ¢y in proofs has huge consequences. To begin with, Gentzen
showed, in 1936, the consistency of Arithmetic, by induction up to €y, hence using
methods beyond the finite ones, which are below w!®. Next, this “skeletons of in-
finity” can be found in the minimal construction of a model of Set Theory: Goédel’s
constructibles, which takes us back to the continuum. Gdédel’s idea in 1938 was briefly
as follows: starting from the empty set, repeat by induction up to €¢g the constructions
formalised by Set Theory in their language and noting else!”. The real numbers built
inside this mathematical structure do satisfy the Axiom of Choice (and the Continuum
Hypothesis), for reasons of minimality that we can guess: the sets of real numbers have
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minimal cardinality (see [Jech,1973], [Devlin,1973]). Cohen in 1966 proposed another
construction for Set Theory: he adds generic or arbitrary elements, whose properties
are “forced” bit by bit, during the construction of the model, in a way that does not
realise the Continuum Hypothesis (or the Axiom of Choice).

We normally say that these two major results show the independence of the Contin-
uum Hypothesis (and of the Axiom of Choice) from the formal Set Theories (Zermelo-
Frankel, etc..). But this is not the most interesting aspect: the meaning of these
theorems is in their proofs. They consist of mathematical (set-theoretical) construc-
tions inside which certain properties are realised and through this they give us precise
information about the nature of these properties (in particular about the structure of
the continuum and the cardinality of subsets of the Cantorian reals: they depend on
the construction made). The fact that these properties are independent from the For-
mal Set Theories concerned (the independence) says nothing about the continuum, but
simply underlines the poverty of these formalisations, which are independent of any
structure and which were born exactly to answer the questions about the continuum
and about choice. Frequently formalism forgets the constructive and structural nature
of Mathematics: G&del and Cohen’s constructions remind us of this.

5.3 The Infinite in the Trees

Trees in Mathematics have their root on top: a unique node, which branches down-
wards. A tree is finitely branching if each node has a finite number of nodes below it; a
branch is a sequence of consecutive nodes, a path without jumps that starts at the root
and develops to the bottom. Consider now the following principle, known as Kénig’s
Lemma (KL): “in an finitely branching, infinite tree, there is an infinite branch”.

The reader certainly understands, ‘sees’ this geometrical property of trees: if the
infinite tree cannot grow infinitely horizontally (since it is finitely branching) it must
grow infinitely vertically. This is an easy observation about the construction of trees,
by an ‘insight” onto the plane or structure of trees. However, we cannot, in general,
effectively produce (construct by a calculable process) the infinite branch, even if the
nodes are labelled and the tree is effectively produced (recursively enumerable). More
precisely: one cannot give an algorithmic rule, write a program that generates the
infinite branch, for the computer will have to go down paths for exploration and returns,
erasing and reconstructing its memory in a non-effective way. Hence this principle, even
if evident, goes beyond usual effectiveness; it is not intuitionistically acceptable'®.

Yet this principle has several applications. One is implicit in the categorical analysis
of the impredicative definitions, mentioned in 5.1: a somewhat related principle, the
Uniformity Principle (UP, see the latest note above), is used in the construction of the
categories closed under products indexed over themselves ([Rosolini, 1986], [Hyland,
1988], [Longo&Moggi, 1991]; see [Longo, 1987] for a partly informal exposition). The
principle hence contributes to giving structural semantics to the syntax of impredica-
tivity: as we have mentioned in paragraph 5.1, we can ‘understand’ the impredicative
definitions as closure properties of certain categories. Moreover, Tait-Girard proof of
the normalisation theorem for impredicative Type Theory (see [Girard&al, 1989]) uses
Konig’s Lemma and one “comprehension” axiom over Sets of the following form

dX € Sets.Vz.(z € X < A(x)).
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The naive platonists, which accept this axiom, and the limitative constructivists of
different schools, that reject it, all attribute to it an ontological content, on the basis
of a “prejudice (in fact a medieval one) according to which the same logic holds for
Mathematics and the real world — this implies, as a consequence, that an existential
quantification must refer to singular individual entities really existing as separated,
independent and transcendent entities” [Petitot, 1992]. This mistake that Petitot de-
scribes very well, is based on forgetting the role of proofs in Mathematics; it is suffi-
cient to observe closely the argument for “strong normalisation” in Type Theory, in
[Girard&al, 1989; par. 14] for example, to see that this axiom is simply a principle of
proof: it ‘just” permits to replace one variable over propositions (or types) for a given
collection of terms, defined during the proof. Where is the ontological miracle?

A major consequence of the Strong Normalisation Theorem for Girard’s system,
and also for other systems starting with Godel’s 1958 system, is a demonstration of the
consistency of Arithmetic of first and second order, and hence of Formal Analysis (see
[Girard&al, 1989])1°.

In summary, non-effective insights or conceptual constructions are part of the math-
ematical practice and the metamathematical theoretization, with no need to refer to
‘ontological’ principles. The consequences of an ‘existentially quantified’ assertion (a
comprehension axiom, say) are logical consequences of a possible (or assumed) con-
structions. The insight into trees may be as certain as an effective procedure.

As a matter of fact, even much stronger properties of trees than the previously
described compactness property, (KL), may be acceptable. This is too complex a
matter to be described in short, but it may be worth hinting that also the so called
“determinacy for Ag trees” bases its reliability on an insight into the planar structure
of trees. Consider a well-founded tree (roughly, a tree with no infinite branch) and
let two players play the following game. Player one moves downwards from the root
by choosing one node; player two moves further by choosing a node below. The first
player that cannot move anymore (he is on a leaf) has lost. Fact: there is always a
winning strategy for one of the players. The proof goes by an ‘easy’, but powerful
induction: it is trivial for ‘one node trees’; given a tree, assume it for all the trees
obtained by erasing the root, then prove it for the whole tree (obvious). Surprisingly
enough, one may derive from this fact the consistency of Arithmetic (and even more):
the expressiveness (and difficulties) depend on (the careful - impredicative - definition
of) the rich structure of well-founded trees and the use of induction on them (see
[Moschovakis,1980], for example). The latter turns out to be convincing, even certain,
by the insight into the planar structure of trees.

6 The Logical Independence

The first great result of incompleteness, or of independence with respect to an interest-
ing formal system, is Godel’s result, in 1931. In particular, Godel’s “first incompleteness
theorem” shows that formal Arithmetic, which can code all effective processes, contains
undecidable propositions, if it is consistent?°. The second incompleteness theorem says
that Arithmetic does not show its own consistency. More precisely, the second theorem
shows that Gdédel’s undecidable proposition is equivalent to consistency and hence the
theorem shows that the proposition is true, in the standard model, if we suppose the
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consistency of Arithmetic.

Later, to show the consistency from Gentzen to Girard, it was necessary to come
out of the effective finitism and make use of stronger principles of proof, as hinted
above.

We have also mentioned two other major results of independence, as consequence of
Godel and Cohen’s constructions: the Continuum Hypothesis and the Axiom of Choice
are not demonstrable nor refutable within Formal Set Theories.

By this, are there mathematical truths that we cannot reach through ‘demonstra-
tion’? How would this be implied by the results of incompleteness or independence, if
we just mentioned the existence of constructions which demonstrate the consistency of
Arithmetic, of the Continuum Hypothesis and of the Axiom of Choice? There are no
propositions that are ‘true and not demonstrable’ in Mathematics. True and demonstra-
ble with respect to what, with respect to which construction and which proof principles
? One must make this precise.

There is in the usage of the this phrase, ‘true but not provable’, a ‘slipping of
meaning’, very relevant and typical of naive Set Theory. We only have a precise notion
of ‘truth of a proposition” with respect to given mathematical structures (there are
in fact several notions: Tarski’s, Kripke’s, Brouwer-Heyting-Kolmogorov’s...). But we
believe naively that there exists a set of true propositions. And hence the mystical
reasoning: we move from the notion of truth to the collection, which exists in God’s
mind and which contains, one by one, the true propositions, in a well-ordered fashion.
Which one, then, between the Continuum Hypothesis (CH) and its negation -C'H
belongs to this collection?

In Mathematics when we talk about the truth of a proposition, it is necessary to
say what we mean by this (that is, with respect to which notion of truth and with
respect to which structures) and moreover it is necessary to show the truth with re-
spect to this structure, to this notion. That was what Godel did with the proposition
“this proposition is not provable”, which he showed to be codifiable and undecidable in
formal Arithmetic. He also showed that this proposition is valid in the standard model
(under the hypothesis of consistency, as a consequence of the second theorem of incom-
pleteness). But Gdédel did not say that the consistency of Arithmetic, undemonstrable
in Arithmetic, is “true”: for that it would be necessary to use Gentzen’s proof, based
on stronger principles. Godel (and Cohen) will give us structures where the Continuum
Hypothesis and the Axiom of Choice are true (or false) and they proved it.

Hence, what is this phenomenon of incompleteness, so important for the treatment
of the continuum in Logic?

When discussing the intuitionist conjunctions and disjunctions, we saw a perfect
correspondence between proof principles and categorical constructions. But this is not
always this perfect. The incompleteness of a formal theory, with respect to a precise
structure, appears when we have a rift, a gap, between proof principles and construction
principles. Formal axioms, abstract_principles, syntax for the manipulation of symbols
and proofs in one side, constructions, in general geometrical or structural ones, in the
other. The mathematical and logical difficulty lies in ‘putting the finger on’ the gap by
providing theorems, making precise the proof principles and the construction principles
utilised. We usually begin by ‘destilling’ the latter from our practice of Mathematics.
This preliminar operation is particularly difficult, for the mathematical praxis includes,
as Chatelet says, the “metaphors”, the “allusive strategems” as “devices deliberately
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producers of ambiguity, which induce experiences of deep thinking, having as their
kernel the relation and the operativity”...of “gestures that unveil a structure and re-
veal in ourselves other gestures” ... “equilibres en porte a faux qui ne se rompent
qu’en emportant un espace plus ample” [Chatelet,1993; p. 32-37]. These metaphors,
these strategems are not the ‘psycological sugar’ of the discovery, they contribute to the
practical construction and get specified over time, with effort, into new principles of
constructions, new structures. The design of conceptual invariants (geometrical, alge-
braic..) is also part of this process, invariants which are the synthesis of a plurality of
experiences in the interior and the exterior of mathematics. A (small) part of the work
of the mathematician consists of making explicit the principles of construction which
he uses to define his structures. A (large) part of the work of the logician consists in
the choice and the formalisation of principles of proof, observing and organising the
mathematical constructions, to make up systems of axioms, rules of inference ...2!. The
analysis of links with what preceedes and grounds the work of both, at the cognitive
level, or which can be found at the exterior of Mathematics still needs to be done.

Actually once the principles of proof and construction are well-described, there is
not always a clear demarcation between them; think for example of the Principle of
Uniformity or of Konig’s Lemma, or the Axiom of Choice.. which are always between
proof and construction. Amonsgt the ones we have seen, perhaps only the axioms of
comprehension do not look like principles of construction and are pure ‘proof tech-
niques’. But also the rules and the formal axioms of the Arithmetic of Peano-Dedekind
or the logical systems of first order of Frege and Hilbert, the Set Theories, are very
clearly principles of proof, derived from mathematical constructions (Number Theory,
Analysis, ..). It is in the difficult to detect, but possible gaps, between formal proofs and
mathematical constructions, that incompleteness theorems can be found.

The incompleteness theorems of Godel (the first: under the hypothesis of con-
sistency, there is an undemonstrable proposition; the second: the consistency is un-
demonstrable) and the consistency proofs from Gentzen to Girard show that in the
construction of the integers and their properties we use, or we can use, if we we accept
them, strong principles, beyond formal arithmetic: we show hence that the consistency
is a true property over the integers (and hence we show the truth of the undecidable
proposition given by the first theorem of Gédel, which is non-demonstrable in Arith-
metic and equivalent to consistency).

The constructions of Godel and Cohen prove the same thing about CH and AC:
they show that they are true (or false in Cohen’s case) on certain structures, contructed
using certain principles, but that they are non-demonstrable using simply the axioms
and rules, the proof principles, of Formal Theories of Sets?2. In other words, all these
results (and many others: Paris-Harrington, Kruskal-Friedman ...) by proving the
truth or validity of certain propositions over possible mathematical structures (universes
of sets or of numbers) or by proving their unprovability within given formal systems
(described by possible proof-principles), ‘simply’ display the gap between mathematical
constructions and formal theories.

Thus, one should never say in Philosophy of Mathematics the phrase ‘there are true
but non-demonstrable propositions’, for this phrase makes no sense in Mathematics.
A working mathematician (not on Sundays, for then he does the usual naive platonic
philosophy) asks immediately ‘ Non-demonstrable with respect to which system (to
which proof principles)? True in which structure (using which construction principles
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and notion of truth)?’

This century, the formalism, in Logic and Proof Theory, which going further, has
found in finitism and formalism its origins, have without doubt helped to answer these
questions. But why logical formalism, a philosophical indirect springing of the math-
ematical practice, should be the ultimate source of our certainties, of our analyses of
proof and of construction in Mathematics?

The conceptual networks, inside which the mathematical constructions are embed-
ded, do not give us the ultimate certainties, but insert each construction within other
forms of knowledge. These give it a meaning, several meanings, whose connections
and compatibilities, form the net, relatively solid, of our relation with the world. It is
the practical unity of Mathematics and its emergence from the world which contitutes
its foundations: this frame and the balances of theories, which translate each other,
interpret each other, give rool to each of its nodes in our forms of knowledge.

The analysis of proofs, Proof Theory, is one of its instruments. The different struc-
tural semantics will provide others. But it is necessary to insert Mathematics in the
triangular relation history—individual-world, by reconstructing the cognitive and his-
toric percourses which are at the origin of the mathematical invention.

Our effort towards the comprehension of the world is like a walk over quicksand:
when we throw the net of our knowledge, of which mathematics is but a small part,
this net will permit us to advance a few steps, just by its extension. The challenge
of naturalization, as cognitive analysis, and as analysis of the historical and collective
construction of concepts (mathematical ones in particular) consists in finding a few
supporting points for this net.

7 Three Levels and the Richness of the Continuuum

In his essay about the Continuum Jean Petitot [Petitot,1992] underlines an essential
‘bimodality’ of the continuum. First a form of giving, a pure intuition, emerging from
the world, purely phenomenal and without autonomous objectivity, for which it is
necessary to elaborate a (mathematical) theory of its psycho-physical genesis, as part
of cognitive analyses of pure intuitions. Then a mathematical reconstruction (non-
univocal) of the intuition, which acquires a value and an objective reality, but which,
as any transcendental totality, cannot be a complete determination of the intuitive
giving.

In this article instead we have underlined, initially, the non-unicity of the intuition
of the continuum. Then we have developed an analysis which emphasized three levels:
the intuition one, the construction principles one, and the proof principles one.

On the first level, the richness of the world and of points of view from which to
observe it, compatible points of view, non isolated, but built from a dialogue with
evolution and history, suggest a plurality of intuitive approaches and ground mathe-
matics in our relation to the world. In part we find these points of view in the different
mathematical constructions of the continuum, which constitute the second level. These
constructions enrich and modify the original intuitions, which are not that simple when
the mathematical praxis adds to them its depth. But thanks to Logic there is a third
level, where the analysis of the proof (as well as the Formal Set Theories, their axioms,
their rules of inference) plays an essential role. Clearly, the incompleteness results
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lay in between the second and the third level, as a precise form of indetermination of
mathematical constructions by formal theories.

Speaking transcendentally, the mathematical objectivity does not find its origin in
the unicity of the intuitive giving, nor in the categoricity (or unicity) of the psycho-
physical genesis of that one, but instead in the common, historical and cognitive (hence
intersubjective) process of the conceptual construction. That is, in the mathematical
construction the value and the objective realities are not to be found in the mathematical
entities (the integers, the real numbers, w or ey for example) but in the process of
conslitution of these so-called entities, as conceplual constructions: the iterations, the
passages to the limit, the closures of horizons, the constitutions of invariants?®. In the
case of the continuum, the mathematical objectivity is also in the richness of interaction
of three levels we mentioned: intuition, Mathematics, Logic. This interaction is not
a vicious circle, but a virtuous one, extraordinary example of the dynamicity of our
forms of knowledge: Logic, which only extracts formal rules from the constructive
practices of Mathematics, offers, thanks to the incompleteness theorems and Non-
standard Analysis, for example, new mathematical structures, which suggest a new
intuition about the continuum. A further starting point, through games of dynamic
reflections, for other constructions and formalisations.

When we return to the Theories, after all these metatheoretical considerations, we
could say that we then better appreciate one of the aspects of the expressive force of
Mathematics. Mathematics knows how to bring back to its interior this reflexivity of
the world and of the forms of knowledge: the impredicative analysis of the continuum,
the impredicative logical systems are possible examples. But we should also cite the
analysis of resonance within dynamical systems and many other mathematical theories
where any stratification would distance us from the world.

8 Discrete and Continuum in Metamathematics

Number Theory, at least the elementary one, but also Logic and the set theoretical
practices, after Cantor, Dedekind and Frege, give ontological priority to discrete notions
and derive the mathematical continuum from the integers, the way we have briefly
described. By contrast Leibniz and Thom consider the continuum as the original
giving, central to all mathematical construction, while the discrete is only represented
as a singularity, as a catastrophe. Physics is also thorn between these two tendences.
In one hand it makes sense to say that every process should be continuous, or even
two times differentiable. On the other hand we could affirm that the world is discrete:
think about the atoms, the elementary particles, the quanta. Even within quantuum
mechanics, where we might expect to find only discrete representations, we find the
two schools (see, for example, the debate in [Salanskis&Sinaceur, 1992]). What about
the delta functions of Dirac? These smooth and infinitely differentiable curves, that on
the limit become pointed and mathematically disagreable: a true ‘catastrophe’. But it
is Mathematical Logic, the way it was specified this century, that utilises exclusively
symbolic languages and the discrete inferences as ultimate foundations of Mathematics,
even in the analysis of the mathematics of the continuum.

It is possible that this priority attached to the integers have solid cognitive mo-
tivations and found its origin in an apparent ‘isomorphism’ of discrete registers of
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experience: when the sensations present themselves isolated one from another, the dis-
crete sensibles (tact, vision, hearing) appear isomorphic. A source perhaps of a certain
‘canonicity’ of the operation of counting in the human experience. It is also necessary
to recognise that Mathematics, Logic in particular, reflect very well this ‘intuitive cat-
egoricity’ (formally: unicity up to isomorphism) of the discrete. If we take the different
constructions of the set-theoretical universes (Gédel, Cohen..) their representations of
the integers are isomorphic. Hence they are not affected by the Continuum Hypothesis
nor by the Axiom of Choice nor by their negation. That is, we have an effective pro-
cedure to eliminate these principles from any proof, in Number Theory, that uses it.
Moreover, we can show in Set Theory that any non-standard model of formal Arith-
metic contains an initial segment isomorphic to the (standard) familiar sequence of
integers: the true place of finite counting. Similarly in Category Theory, every topos
contains an object of natural numbers with the same characteristics. Nothing com-
parable happens to the continuum: as we have seen, the experience of the world, of
space and of time, does not impose a canonical continuum to our intuition. Also in
Mathematics the non-standard line, for example, is locally and globally non-isomorphic
to the standard one.

There is no mystical ontology of the natural number here: it is conceivable that the
sensible and discrete set of natural numbers and the practice of counting constitute an
experience that imposes itself with much more evidence and of unicity, amongst our
acts of life, than the intuilions of the continuum. Perhaps this experience is pre-human
(see the monkeys in [Hauseré&al,1996]). Where from comes this canonicity, this almost
untcity, of the representation of natural numbers in Mathematics: a beauliful corre-
spondence between mathematics and the world, a strong sign of the way mathematics
emerges out of our praxis.

In any case, beyond history, we could pose the problem of knowing if it is this
practical priority of the discrete which forces the canonicity of the representation of
the standard natural numbers in Logic and in Mathematics (against the plurality of
representations of the continuum). Or perhaps if it is the (arbitrary) foundational
choice made in Logic of considering only, of defining itself even, as discrete resasoning,
which forced upon us this canonicity of the discrete. That is, by dealing with countable
sequences of axioms and finitary algebraic rules (at least discrete ones), Logic may have,
a posteriori, convinced us of the central position of the discrete, simply by giving us
‘categorical’ logical systems, as far as finite counting is concerned (as Thom seems to
suggest). In other words, we could then believe that:

- Either the finite, the discrete, common foundation of Formalism and Intuilionism,
which in their different versions and combinations constitute the two main currents
in Proof Theory (and Logic in general) justifies itself by the historic (and evolutive)
weight of counting;

- Or it was the recent (but at least as old as Boole’s “Laws of Thought”) choice of
founding Mathematics only over linguistic rules, discrete sequences of symbols, has
made us forget, by the expressive force of the metamathematics it generated, the direct
role of Geometry and of the continuum in the mathematical reasoning (this could be
seen as part of what René Thom calls “le delire logique”, [Thom, 1990]).

Amongst the Greeks, but also amongst the modern geometers, one demonstrates
theorems by direct inspection of figures, by their continuous movements (rotation,
sliding, superposition..) Think about the direct proof of Pythagora’s theorem by de-
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composition and sliding of squares and rectangles. Build like Euclid a square of twice
the area of a given square: draw the four lines parallel to the diagonals by the ver-
tices; indicating by your finger, in silence, without languages nor symbols, the four
triangles duplicated, give a demonstration complete and precise, rich of a rigour that
is not algebraic-linguistic. T claim that this “compelling role” of Geometry is crucial in
todays’ work on trees in Proof Theory (the planar structure of infinite trees is crucial
in K6nig’s Lemma or in Determinacy, as hinted above).

It was from the Analytic Geometry of Descartes that the powerful tool of the
algebric language tended to take over, for its generality, the direct role of Geometry in
proofs. This generality is sometimes fictitious, for there is no modern discourse about
differentiable varieties, even when very complex and general ones, without a sketch on
the blackboard. An appeal to intuition, no doubt, but which interacts with the proof, or
which can even constitute a proof. The formal skeleton of the finitary logical languages
s only a fragment of the mathematical reasoning: an essential frame which has given us
solid proof principles (and very powerful symbolic machines, the computers) but whose
incompleteness with respect to the mathematical constructions are very important (the
theorems of incompleteness or independence).

Perhaps if, instead of looking for the finitist certainties our founding fathers had
developed the analysis of proofs as movements of images, geometries which decom-
pose and superimpose themselves, as the Greeks did, or if they had treated them as
continuous movements between metaphors and conceptual images, giving emphasis to
the plastic character of reasoning, “the allusions that nurture themselves from the in-
determination for forcing a higher determination” [Chatelet,1993] we would have now
foundational systems that would force a single representation of the continuum, despite
its plurality of experiences (which we wouldn’t notice anymore), and on the contrary a
plurality of forms of counting. A major consequence of this bifurcation in history could
have been a very different notion of Computing Machine, possibly analogue and contin-
uous, for todays digital computers are the direct sons of calculability, as representation
of deduction, a la Hilbert, G6del, Herbrand,Turing, Church ... and hence as a discrete
and effective procedure. Another consequence could have been a different notion of
rigour, a notion that has become so strong and clear this century thanks to formalism.
In any case, why the mathematical rigour should be but formal, interminable sequences
of symbols without meaning and mechanical rules? Now that we have understood well
what is formal-linguistic rigour and that we have machines much ‘more rigourous’ than
us, we, humans, can serenely try to extract the principles of proof from the geometrical
constructions, from drawings, from the intuitions of the continuum. Even if we believe
that the role of counting in our perception and history (since the ... apes) has forced
the mathematical canonicity of the discrete integers, in particular through the research
of the finitist certainties at the turn of century, we could nowadays go further. Actually
we have attained a very good level of formal mathematical rigour and the paradoxes
are distant. Hence we can now reconstruct the meaning and the practice of demon-
strations and widen our notion of rigour, by encompassing also diagrams, metaphors,
images. These constitute themselves in the continuous movements of reasoning, which
goes from one concept to the next by slidings, analogical upturnings, tenuous figurative
links which extend themselves with continuity. This is not about opposing a new Proof
Theory to the old one, but about enriching Logic and Proof Theory, making it come out
of the formalist cage which generated the so-called “logico-computational hypothesis”
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for the human intelligence: “Intelligence ... is effectively defined as that which can be
manifested by the communication of discrete symbols” ([Hodges, 1992]). Hence a pic-
ture by Piero della Francesca or the Greek construction of a square with twice the area
does not contain “direct” intelligence, even less foundational interest for Mathematics:
intelligence develops only after its traduction in finite algebraic languages, if necessary
pixel by pixel, over discrete cartesian coordinates. By contrast, the construction and
the synthetic handling of images, as a continuum, as an impredicative ‘whole’ linked to
its parties, is the heart of an analysis, which is possible today, of the intelligence and
of mathematical proof.

We found traces of this in the work of logicians which have insisted on the role of
Geometry. For example, in the denotational (or categorical, see paragraph 5.1) seman-
tics of Lawvere-Scott for intuitionistic systems (or for programiming) the geometry, the
continuity, give signification to the lists of symbols ‘without meaning’, for “Geometry is
more compelling”, as Dana Scott suggested once. Or also in the geometry of proof nets
by J.Y. Girard, where the symmetries and the direct manipulation of images (networks
over the plan) come into the play of logical derivations, in an essential way. Moreover
geometry is central in the recent mathematical development of husserlian analysis of
knowledge, as in Petitot’s work??. It is perhaps ‘vision’ that is more compelling, as
some neurophysiologists claim.

But this widening of Proof Theory should not be just a new game of mathematical
rules, as this would only give us a new mathematical discipline. Wittgenstein had
forseen this happening with the hilbertian metamathematics [Shanker, 1988] and it has
in fact happened. Metamathematics became a new and beautiful kind of mathematics,
where the principal results have been indirect: a precise notion of formal rigour and

. Computer Science, but not the explicit foundation of the mathematical practice,
as was Hilbert’s dream. We can not ‘found” mathematics (its “rules of the game” as
Wittgenstein says) over a mathematical discipline, a logical-mathematical system also
made up of mathematical “rules of the game”. There cannot be an internal foundation,
purely formal and mathematical, of Mathematics: the incompleteness theorems are not
accidents, they underline the gap belween the metamathematical principles of proof
(once transformed into a mathematics of formal rules) and the rigourous practice of
mathematical constructions. It is then necessary to increase the variety of tools for
the foundation of mathematics, first by the direct constructions of Geometry (which
is being done), then with other forms of knowledge; that is, retaking the metaphor of
knowledge as a network (end of Sect. 6) it is necessary to insert the partial network of
Mathematics in the wider one of the other forms of knowledge. The project to aim at
should take mathematics out of its ‘auto-foundational’ game (metamathematics as a
form of mathematics) and look for its cognitive origins in our relation to the regularities
of the world, in the connections to different conceptual constructions, in the mental
invariants that we build while living and historical beings.
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Notes

1.

“There are three forms of time:... the present time of things gone, which is our
memory; the present time of present things, which is our vision; the present time
of future things, which is our wait” [St. Augustine,401;Lib XI, ch.XX]. Evidently
St. Augustine is not talking about intuition: time, its measuring, Mathematics
and the knowledge of God himself reside in memory.

. An early counterexample is due to Weierstrass. One variant of his example is the

function f(z) = Eﬂn;f—xl. One was surprised until Poincaré by the fact that this
function is nowhere differentiable (and with good reasons...).

. It is interesting to note how usually we talk, in Mathematics and in Logic, about

the ‘reduction’ (a la Cantor-Dedekind) of the real numbers to the integers, as if
the reals were already ‘there’, as if the ‘informal practice’ of the mathematical
continuum (see Cauchy’s demonstration of 1821) made reference to an external
objectivity, that we must understand by reduction (the same way we reduce
some chemical realities to Physics). This is comprehensible in the naif platonic
practice of Mathematics, but it it is less so for the formalist/definitionist vision
of mathematics still prevailing in Logic.

. In Set Theory, in writing Vy for ‘for all y’, a set b is defined impredicatively if,

typically, it is given in the form
b={z|Vy € A P(z,y)}

where b can be an element of A (the same set or collection of sets A which appears
in the definition of b). Briefly in an impredicative theory there is no stratification
of the mathematical universe and it is acceptable to define one element b using
a predicate/set A which can contain b. Informally we can not comprehend the
parts, the elements, without comprehending at the same time the whole, or a big
part of the whole.

. Also for Leibnitz and Kant the continuum cannot be decomposed into its ele-

ments, it is not formed from simpler unities: it presents itself simultaneously as
a totality and its parts (see [Panza,1989]).

. In the sequence of his fundamental reflections Weyl first joined the ranks of In-

tuitionism, then he embraced a more open view of mathematical knowledge. But
the mathematics of Brouwer and the logical systems of Heyting are compatible
with the impredicative notions: in fact even the definition of an intuitionist proof
is impredicative (see [Longo, 1987] for more: the interplay is between theory and
metatheory, so it is acceptable for many). After that, in his logical-philosophical
writings (see the French version of [Weyl, 1918] for many references), Weyl will
never go back to his Predicative Analysis. On the contrary, he will develop a very
rich vision of the connections between Mathematics and Physics which will culmi-
nate in [Weyl, 1953] his last book, a Husserlian masterpiece, clearly anti-formalist:
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10.

11.

12.

13.

14.

15.

Mathematics emerge from the effort to know the world (physically, chemically,
artistically ...) as a ‘transcendental objectivity’. See also [Weyl, 1985] for a very
balanced and ‘secular’ view of the instruments of demonstration in mathematics.

. In Intuitionistic Mathematics we distinguish between sequences given by a ‘law-

like’ or ‘lawless’ ones. Here the ‘law’ is an algorithmic (or effective) rule. For
example, 7 is the limit of a lawlike sequence (the algorithm for constructing it),
whereas a real whose decimals are given by successively playing a die is the limit
of a lawless sequence. But even a convergent lawless sequence obeys a rule and
follows a convergence criterium: for example play the dice and add its results as
decimal numbers. The limit is unique and well-defined: the criterium of conver-
gence is given by the fact that ‘we add as decimals’ the results of the throw. It
is the existence (of the sequence) that is weak, non-effective.

“Among the usual spaces that better embody the ideal of the continuum, there
are two that appear almost immediately: the euclidian line and the euclidian
plan; the line for its mechanical and physical realisations (the extended thread,
the luminous ray) ...” [Thom, 1992; p.142].

. Leibniz infinitesimals became the new real numbers, smaller than any other stan-

dard real number. Then z &~ y if  — y is infinitesimal and hence a function is
continuous if f(z) = f(z + h) for all infinitesimal h.

Axiom of choice (AC): “For all non-empty collection of non-empty sets, we can
contruct a set which constains exactly one element from each set of the fam-
ily”. The Axiom of Choice is essential in many demonstrations, including some
that concern the continuum: without AC the definitions of limit based on neigh-
bourhoods and the one based on sequences are not equivalent (it is necessary to
construct a sequence, by choosing a point for each succesive environment).

The few technical notions in this section will not be used in the sequel: they are
just examples of elementary connections between principles of proof and princi-
ples of construction. For more details see amongst others [Lambek&Scott,1986],
[Asperti&Longo,1991].

We could say the same about Girard’s Linear Logic as its nature makes even
Classical Linear Logic ... “constructive” [Girard, 1991].

The research on the “unshakeable certainties” of Hilbert and Brouwer (see [Brouwer,
1927]) has given us this century a very solid notion of mathematical rigor: the
finitist deduction, formal and effective. Over this basis, the incredible Thirties
of Logic have seen the birth of one precise notion of calculation and of machine,
the foundations of the modern programming languages (Turing: the imperative
languages; Church: the functional ones; Herbrand: the logic ones).

See the note “D’Anaxagore a Dedekind”, 1926, in the French version of [Weyl,
1918].

We can continue with €, €;,..., ¢, and having understood the mechanism, which
after g is not that simple, we can continue with ¢, ... .
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16.

17.

18.

19.

20.

21.

22.

But this method of proof was not considered very convincing by many, for the
heart of the problem of consistency for Arithmetic is the consistency of induction,
the key principle of Peano’s Arithmetic: one shouldn’t use an even more powerful
induction to show it. There are other ways of proving it, tough, using formally
equivalent, yet more conving, methods.

This means reiterate the constructions formalised by the axiom of power of a set,
of replacement— image of a set by a function, etc ... so long as they are definable
in the language of Set Theory.

Consider the contrapositive of Kénig’s Lemma (KL), which is called the FAN
Theorem since Brouwer: “if in a finitely branching tree, each branch is finite,
then the tree is finite”. FAN says that if we ‘get stopped’ along each of the
descendent branches, then a finitely branching tree is uniformly limited: it is thus
a compactness property. Most intuitionists (e.g. [Troelstra, 1973]) accept FAN,
which does not imply KL, for the equivalence between FAN and KL, its classical
contrapositive, is not intuituionistically valid. (In general, in Intuitionistic Logic,
——A is not the same as A and we cannot go from =B — —A to A — B (read KL
as “A [infinite tree| implies B [there exists an infinite branch]”).) In [Troelstra,
1973] a relevant variant of FAN is proposed, the Uniformity Principle (UP).

The theorems of cut-elimination and normalisation for the systems of higher order
give extremely solid bases to the impredicative definitions. The consequence is
that every proof in the system can be simplified to a ‘minimal form’ (a normal
form or without cuts), or that there are no ‘incontrollable propositions’ that can
introduce themselves into proofs. We must note that the second principle of proof
mentioned here is sufficient to prove the theorem of normalisation, but the proof
of Girard, which uses both principles displays very clearly, for its elegance, the
issues of the construction. See also [Fruchart&Longo, 1995] for an application of
a recent theorem to the justification of impredicative definitions.

In particular the formalised proposition, which says “this proposition is not prov-

able”.

Computer Science has given new motivations to the work of logicians, for without
reference to the mathematical structures, they try to analyse the practice of pro-
gramming and the conception of the architectures of computers (and to propose
new designs). In the good practice of computing the unity of Mathematics im-
poses itself again, in the research for a mathematical and structural meaning for
these theories (semantics of programming languages: denotational, algebraic,..).

We could mention that beyond products and coproducts, which correspond so well
to the intuitionist conjunction and disjunction, the Effective Topos, which is the
basis of the sketched constructions of second order, is constructed using principles
that go beyond the other ‘pure’ intuitionist rules (the principles of Uniformity
and of Markov, amongst others): hence the Effective Topos shows the truth of
non-demonstrable propositions of the systems of intuitionistic logic, of which it
is a model. The Genericity Theorem, see [Longo, 1995; Fruchart&Longo, 1997],
gives another mismatch between the Topos and Intuitionistic Logic.
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23. See also [Petitot,1992; par. I1.1].

24. For a philosophical introduction to the “geometry of perception”, and also for its
numerous applications to which it referes, see [Petitot, 1995]. About the role of
the continuum in linguistics, see [Fuchs&Victorri, 1994].
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