
HAL Id: hal-03316282
https://ens.hal.science/hal-03316282

Submitted on 12 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructive natural deduction and its ”omega-set”
interpretation

Giuseppe Longo, Eugenio Moggi

To cite this version:
Giuseppe Longo, Eugenio Moggi. Constructive natural deduction and its ”omega-set” interpretation.
Mathematical Structures in Computer Science, 1991, 1 (2), pp.215-253. �10.1017/S0960129500001298�.
�hal-03316282�

https://ens.hal.science/hal-03316282
https://hal.archives-ouvertes.fr

1

Mathematical Structures in Comp. Sci., vol. 1, n.2, 1990.

CONSTRUCTIVE NATURAL DEDUCTION
AND

ITS "ω-SET" INTERPRETATION

Giuseppe Longo (*) Eugenio Moggi
Laboratoire d'Informatique LFCS, Computer Science Dept.,

Ecole Normale Superieure, Paris University of Edinb., Edinburgh

longo@ens.ens.fr em@lfcs.ed.ac.uk

Abstract . Various Theories of Types are introduced, by stressing the analogy "propositions-
as-types" : from propositional to higher order types (and Logic). In accordance with this,
proofs are described as terms of various calculi, in particular of polymorphic (second order) λ -
calculus. A semantic explanation is then given by interpreting individual types and the
collection of all types in two simple categories built out of the natural numbers (the modest sets
and the universe of ω -sets). The first part of this paper (syntax) may be viewed as a short
tutorial with a constructive understanding of the deduction theorem and some work on the
expressive power of first and second order quantification. Also in the second part (semantics,
§.6-7) the presentation is meant to be elementary, even though we introduce some new facts on
types as quotient sets in order to interpret "explicit polymorphism". (The experienced reader
in Type Theory may directly go, at first reading, to §.6-7-8).

Content .
Remarks on "mathematical semantics"
1. Minimal deductions
2. Constructive PNo
3. Reductions of proofs and terms
4. First order logic or types depending on terms
5. Second order logic and explicit polymorphism
6. Semantic interpretation
7. Products and intersections
8. The product Π is the (internal) right adjoint of the diagonal functor

Research supported in part by the Joint Collaboration Contract # ST2J-0374 - C (EDB) of the
European Economic Communitee. This paper is based on an invited lecture delivered at the
workshop "Semantics of Natural and Computer Languages" Half-Moon-Bay (Stanford),
March 1987.
(*) On leave from Dipartimento di Informatica, Universita' di Pisa, Italy. This author's work has
been made possible also by the generous hospitality of the Computer Science Dept. of Carnegie
Mellon University, while teaching in this University during the academic year 1987/88, and by
the support of the french CNRS during summer 1990.

2

Remarks on "mathematical semantics"

The mathematical relevance of some recent work in the semantics of Programming Language

suggests the need for some general preliminary observations on the role of the mathematical

investigation of linguistic concepts in Computer Science.

It is worth recalling that formal notions in Mathematics came after, in time and intellectual

attitude, the work over concrete mathematical structures, possibly intended as entities of an

independent reality. Namely, only by the end of last century and mostly by the work of Frege and

Hilbert, an attempt to achieve a "complete" formalization of mathematical thinking gained some

relevance. Even nowadays working mathematicians think in terms, more or less platonistic, of

concrete structures: sets or algebraic or geometric spaces of various kinds.

Following this pattern, the vast majority of Mathematics trainings begin by first giving the

concrete feeling of structures and extensional operations on them, followed, sometimes, by some

general issues on axiomatization and provability. Rarely a detailed formalization and proof

theoretic investigation of the systems, which have been introduced, is carried out.

This intellectual itinerary, when it does not lead to some deep misunderstanding of the role of

Mathematical Logic, is sufficiently fair and productive: it seems to help the formation of the

intuition and "almost visual" insight into structures that most good mathematicians have.

However a major event has taken place in the last forty years: the birth of Computer Science.

Computer scientists first think in term of formal languages and effective, finitistically describable,

procedures; then, sometimes, they may try to add meaning to these over more or less traditional

mathematical structures: sets, algebras, functions in extenso. The vast majority of Computer

Science courses first introduce a programming language (or the theory of formal or programming

languages) and algorithms (or their theory), then give some hints on how these abstract notions

can be understood in mathematical terms. We may say that, in this respect, Computer Science

reversed the prevailing gnoseological paradigm of Mathematics: first formal notions, then their

(intuitive) interpretation.

The reasons for this are clear to everybody: computers are rather stupid fellows and only deal

with operations formally described in full detail. It requires a great deal of intelligence and work to

have them accomplish the smallest task. For this purpose, the formal notions one essentially deals

with in computing are, first, the programming languages and the algorithms, required for the

computer-man interaction; then the formal systems aimed at the investigation of languages,

algorithms and their properties, as well as at their automatic synthesis. It is clear that this latter

aspects form a crucial research area: Type Theory (and this paper) is part of it.

This inversion of methodological approach, i.e. first formalisms then meaning, which dates

with Computer Science, turned Mathematical Logic into an applied sector of Mathematics and

brought it into the limelight. Indeed, the crucial distinction between syntax and semantics (Frege's

"pure calculus of signs" and Tarski set-theoretic interpretation) is directly inherited from Logic into

3

the Theory of Programming Languages. The same evolution occured in the investigation of

effectiveness, provability and feasibility.

Of course, this phoenomenon had two immediate consequences: it greatly enlarged the audience

of interested researchers and it raised new, unforeseen, problems and issues.

The main system presented below, for example, was first invented, for purely foundational

purposes, by Girard, Troelstra, Martin-Löf (see references). These authors were mostly interested

in constructive approaches to Mathematics and its formalization. Nowadays, since the results of

De Bruijn, Reynolds, Burstall and Lampson, Coquand and Huet, the groups in Göteborgh and

Cornell and many others, most of the relevant work in this field is carried on within the Computer

Science community, for the purposes of writing (possibly correct) software or implementing

deduction (see also Scott[1970] for some early work).

One of the points of formalization, as intended in Computer Science, is the finitistic nature of the

methods involved. The Hilbertian approach to formal systems is surely the main heritage, often

corrected by more or less mild versions of Brower's constructivism. The systems below will

entirely refer to a constructive approach to formalization and they are based on the "propositions-

as-types" paradigm, which is the current motto of Type Theory.

The discussion though is open as to how the relevant aspects of Type Theory should be given

meaning and made understandable by translating them into possibly independent mathematical

constructions.

Martin-Löf and his followers (even more so) insist on providing strictly constructive

explanations of Type Theory, based on the solid grounds of a strictly finitistic approach to

Mathematics: only finite or finitistically defined structures are allowed, functions are just effective

procedures in some formalized language.... This is clearly expressed in Nördstrom[1986].

Indeed, the strict interaction between meaning and denotation, both growing out of a proposal

for a constructive foundation of Mathematics, suggested at several stages new systems or

variations of previous ones, all embedded into a unifying philosophical perspective.

A further motivation for this understanding of types and terms goes back to the same

observation which makes formal systems for computations refer to constructive approaches to

Logic: computers, which are finite machines, run (finite) programs for computable functions, thus

any programming construct should be explained in these terms. This seems less convincing, as

the meaning of software should be provided also to human beings, who may (fortunately) have a

variety of approaches to life and understanding. As long as our brains will not be entirely

computerized, the understanding of a strictly constructive, but complicated system may also derive

from highly non constructive, but conceptually simple, intellectual experiences.

The point is that programming languages are getting almost as complicated as real life and the

more approaches we have to their semantics the better we may hope to deal with their unexpected

4

riches. Thus, everybody must welcome the fruitful direct interaction between denotation and

meaning provided by finitistic view points in semantics, but one should also appreciate the deep

insight given by the limit or ideal objects in Mathematics, particularly when they aid in

understanding the complicated stepwise constructions of automated computing. Functions in

extenso do not need to exist, but everybody understands by a one second sketch on a blackboard

the asymptotic behaviour of the logarithmic function, say, much better than by looking at the

effective generation of a hundred thousand outputs. This is simply because our geometric intuition

is based on the most solid grounds of over two thousands years of mathematical thinking, since

Nemecmo.

Similarly, the sketchy design of a partially ordered set or of a tree, even with limit points,

provides an excellent intuition of what it is meant by the notion of approximation or by order

completeness and a secure guidance to descriptions by constructive formalizations. On the other

hand, when a formal system is given and the issue of its "meaning" is raised, a most informative

semantics may easily come from approaches which are based on entirely different grounds.

Relevant scientific explanations are precisely provided when apparently unrelated systems are

brought toghether and unexpected links are suggested. By this, semantic explanations in terms of

topologies or categories enrich our knowledge in both the source and target areas, guarranty the

relative consistency of complicated formal systems and suggest extensions or even the design of

original systems. Indeed, this is the story of the most relevant applications of Scott-Strachey

denotational semantics, to which, for example, the design of Edinburgh language ML is endebted

(see Plotkin[1977], Milner[1978]), and it seems to be the intellectual itinerary which brought

Girard from system F to Linear Logic as a growing system.

It should be clear that the perspective above gives a major role to informal explanations and

intuitive meaning, possibly based on a vaguely defined "mathematical insight" into structures

(topological, algebraic...). However, this costumary informality of Mathematics always hides

complete rigor and restricts constructions and understanding to the limited cage of mathematical

formalism: lack of ambiguities and precision in meaning is the core of it. In other words, it is

intended that any informal understanding can be made very precise, if time allows. The formal

systems and their semantics below is a typical example of this method and of the forceful formalist

environment.

1. Minimal deductions.

The general idea on which Gentzen-Prawitz systems are based is the concept of derivation as a

formalization of the mathematical practice of theorem proving by stepwise deductions. The

"atomic" step in a derivation is given by the application of a deduction rule. Each inference rule

describes the deduction of certain consequences from given premises. The premises may be

5

formulae, which are assumed, or deductions, i.e. compositions of inference rules. Thus they may

have the structure:

 A1 A2 An

 :
 A1 A2 An B

 ______________ ____

 C C

In the latter case a fundamental concept may be used, the concept of "cancellation". To explain it,

assume that you have deduced that if it rains, then it is humid. In a semiformal way, this let syou

infer "rain → humidity". Now, the latter implication is "true" independently of the truth of the

assumption "it rains"; namely, as an implication, it holds even when you mention it as an obvious

meteoreological remark in a sunny day. Thus, you may omit or cancel "rain" when infering "rain

→ humidity".

We first discuss one of the simplest deductive systems, the Positive Natural calculus (PNo),

as a basis and paradigm for stronger logical extensions. PNo is also known as Minimal Logic.

PNo is only based on implication ("→") as a key concept in deductions. Formulae are inductively

defined as follows.

An atomic predicate is a formula.

If A and B are formulae, then (A → Β) is a formula.

The inference rules introduce or eliminate "→" from formulae and, thus, tell us how the only

connective is formally handled.

Introduction rule Elimination rule

 [A]

 :

 B A A → B
 (→I) _____ (→E) ____________

 A → B B

In (→I), A is "cancelled".

6

We are now in the position to define formally derivations as trees. The rigorous reader may view

the definitions of inference rule and of derivation as given by combined induction.

1.1 Definition . (1) The one element tree {A} is a derivation for all predicates A.
 A [A]

(2 →) If : is a derivation , then :

B B
 ______ is a derivation.

 A → B

 D D' D D'
If A and A→ B are derivations, then A A → B

 ___________ is a derivation .

B

The root or bottom formula of a derivation is the conclusion. In this Natural Deduction system,

the provability relation Γ  Α between lists of formulae and formulae is defined as follows.

1.2 Definition. Γ  Α if there is a derivation, according to the rules above, with all

(uncancelled) hypotheses included in Γ and with conclusion A.

If Γ Α , we say that A is derivable from Γ. Note that, by definition, Γ may contain

several copies of the same formula and superfluous "hypotheses", i.e. if Γ ⊇ ∆ A , then

Γ Α .

Γ,A stands for Γ∪{A}. If Γ = ∅ , we write  A and say that A is a theorem.

Sometimes, the system above is equivalently presented by defining directly Γ Α , that is by

(A) _______ for A in Γ
Γ  A

 Γ,A  B Γ  A Γ  A → B
 (→I) ____________ (→E) ______________________

 Γ  A → B Γ  B .

7

2. Constructive PNo.

We shall soon see the relevance for functional languages of the very weak system PNo. PNo
though is just the implicative fragment of the propositional part of a well known logical system:

Intuitionistic Logic. This Logic was formalized by Heyting in the 30's as a logical basis for

Brouwer's approach to Mathematics. In Brouwer's view, only the subjective intuition of the

stepwise generation of the natural numbers could serve as a basis for mathematical reasoning.

That reasoning, moreover, could only be safe if based on finitistic notions and structures, the only

ones perfectly handled by the human mind. In particular, given a finite structure and a property

one could safely check the truth of the latter in the structure, by finite inspection; while this cannot

be done over infinite structures, where the truth of an assertion would require an infinite

verification. However, assertions on infinite structures can be made, provided that they are based

on finite descriptions and arguments: finitary languages and finite proofs only make sense. In

other words, an assertion is true when it comes toghether with a (finitistic) proof. As a

consequence of this strict finitism or constructivism, following Brouwer (and Heyting), the truth

of A∨ ~A holds only if it is verified over a finite set; in general, A∨ ~A strictly requires a

proof, namely a proof of A or a proof of ~A . Similarly, A→B is true if finitistically provable,

where a proof of A→B means an effective procedures that converts any proof of A into a proof

of B .

In this section we formalize the concept above : C holds iff there is a proof c of C . In this case

we write c : C. In particular, the proof c of an implicative assertion A → B must be an

effective procedure which takes any proof of A into a proof of B . This will be the key idea in

the rewriting below of (→I) and (→E) in an explicitly constructive way, where proofs are

handled as part of the language.

For this purpose, we construt a language for proofs. This language contains variables, as x : A

means that there is an "hypothetical" proof of A and it is used in (possibly cancelled)

assumptions. Suppose, for example, that, if an hypothetical proof x of A is assumed, x : A ,

then a proof b of B may be derived, b : B . By (→I) , one has A → B and, now, also a proof

of it; namely, a transformation λx:A.b which takes any proof of A into a proof of B . The

independence of A → B from A , which is cancelled, corresponds to the fact that the function

λx:A.b does not depend on the (name of the) variable x .

Indeed, the variable binder λ is an "abstraction operator" such as {x |....} in {x  A(x)}, or as

∀x in a quantified formula ∀x.A(x) : the set or the formula do not depend on the bound variable

x.

Thus, the variable binder λ is introduced in the presence of cancelled assumptions :

8

 [x : A]

 :

 b : B

(→ I) ___________

λx:A.b : A → B

Consider now (→ E), i.e. Modus Ponens. In our contructive approach it says that from a proof a

: A and a proof c : A → B we may obtain a proof of B ; indeed, such a proof is constructed from

c and a.

Let's write (ca) for it. That is :

 a : A c : A → Β
(→ E) _____________________

 ca : B

In conclusion the language of proofs of PN0 is based only on variables x,y,z,... , a variable

binder λ and on application. Indeed, a typed language, as a:A also means that "a has type

A". By this, PNo is really the first step in the analogy between types and formulae: the intuitive

meaning of λx:A.b : A → B is that λx:A.b is a function from (the meaning of) A to B ;

indeed, a computable function as it is explicitly defined by a finitistic syntax. Then λx:A.b can

be applied to a term a of type A and gives an output of type B. Note that λ is a variable

binder and binds variables in cancelled assumptions; thus a term does not depend on (the name of)

a bound variable similarly as an implication does not depend on the truth of the premise.

Conversely, if a term or proof of a proposition contains free variables, then that proposition

depends on uncalled hypotheses or, correspondingly, those free variables must have an

(uncancelled or) explicit type declaration.

We notice now that, at this stage, proofs and terms may be viewed in a slightly different way.

Namely, one may simply write λx.b as a proof of A → B by erasing all type information (by

induction, i.e. also in b) in λx:A.b . This is possible, at this stage, by the strong decidability

properties mentioned in the Remark below (on typability). The advantage is twofold. First, it sets

the base for ML programming styles, where one may write type-free programs which are typed at

compile time by the system. Second, a term "proves" many proposition: e.g. λx.x proves A →
A , or has type A → A , for all intances of A (whereas λx:A.x is a different term for each type

A). By this, we have a notion of type-schema corresponding to the notion of (axiom) schema in

Logic. This is not possible in the higher order systems described in the sequel.

More formally, then terms and types are defined as follows:

2.1 Definition: λ - terms are inductively defined as :

9

x,y,z,... are terms

λx.b is a term, when b is a term

(ca) is a term, when c,a are terms.

Types are inductively defined as:

 a given set AT of atomic letters are types

A → B is a type, whenever A and B are types.

Conventions : For terms: λx1x2...xn.a ≡ λx1.λx2. ... λxn.a

 a1a2...an ≡ ((...(a1a2)...an) ;

 For types: A → B → C ≡ (A → B) → C .

2.2 Definition: A list Γ={(x1:A2),....,(xn:An)} of pairs (variable:Type) is a well formed set

of assumptions or of type assignements if xi≠xj , for 1 ≤ i < j ≤ n .

Provability in PNo , i.e. Γ|_ a:A , is defined as for the classical case (see 1.2), w.r.t. (→ I) and

(→ E) above. A useful exercise now is to give effective proofs of simple therorems of PNo .

2.3 Lemma : PNo  λxy.x : A → (B → A)

 PNo  λxyz.xz(yz) : A → (B → C) → ((A → B) → (A → C))

Proof :

 [x : A] [y : B]

 x : A

 _____________ (→ I)

 λy.x :B→ A
 ____________________ (→ I)

 λxy.x : A → (B → A)

 [z : A] [x : A → (B → C)] [z : A] [y : A → B]
 _____________________________ (→ Ε) ____________________ (→Ε) xz : B → C yz : B

 ___ (→ Ε)
 xz(yz) : C

 ________________ (→ Ε)
 λz.xz(yz) : A → C

 ______________________________ (→ Ι)
 λyz.xz(yz) : (A → B) → (A → C)

 __ (→ Ι)

1 0

 λ xyz.xz(yz) : A → (B → C) → ((A → B) → (A → C))

∆

Notation : Kλ ≡ λxy.x ; Sλ ≡ λxyz.xz(yz).

Note that λ-terms code proofs of PNo : each λ corresponds to the use of an (→ Ι) rule, each

application to (→ E) rule. Thus by looking at a term, with the right perentheses, one may

reconstruct the theorem it proves.

Remark (On typability). Not all terms, as defined, have a type (e.g. xx). However, it is

decidable whether a type-free term has a type and one can uniformely effectively generate its "most

general" type (principal type schema; see Hindley[1969], Milner[1978]). These facts are the core

of type-inference and type-checking systems in functional programming. This is why it is worth
looking both at the typed and the type free calculi, in the PNo case (see §.6, the paragraph on

"Semantics of type assignement and of typed terms").

The rest of the first part of this paper will be mostly concerned with the language of proofs in 2.1

and its extensions; when defined by a collection of axioms, which specify how terms reduce to

each other, it is also known as the λ-calculus (see 3.3). However, it may be worth spending a

few lines on a simple variant, which actually originated the topic by the work of Shönfinkel and

Curry in the 20's and 30's. The correspondence between these two systems also clarifies the

correspondence between the deductive approach of Natural Deduction and Hilbert's axiomatic

systems.

We assume that the reader is familiar with the classical Hilbert style presentation of Propositional

Calculus; that is with the system of Logic based on axioms and inference rules. Indeed, Hilbert's

presentation of Logic differs from Gentzen-Prawitz in that it assumes some generally valid truth

(the axioms or axiom schemata) and deduces other truth from these by means of inference
rules. As it should be clear, no assumptions are made in the system PNo, which only relies on

the concept of inference. The two different perspectives will suggest below two different calculi

of proofs. We recall one of the many equivalent axiomatic systems for a fragment of Hilbert's

Propositional Calculus.

2.4 Definition: The Positive Propositional Calculus (PPo) is given by the following

axioms and rule:

 Ax.1) A → (B→ A)

 Ax.2) A → (B→ C) → ((A → B) → (A → C))

1 1

 A A → B
(MP) ___________

 B .

In this case, of course, derivability is defined w.r.t. the given axioms.

Recall that PNo makes no assumptions, except for the structure of deductions, while PPo

relies on two axioms, i.e. on two underived assumptions. This corresponds to having constants in

the language of proofs. That is, in the constructive positive case, it is assumed once and for all that

there are "proofs" of the two propositions (or schemata) in Ax.1 and 2.
Let's call K and S these (constant) proofs (cf. Kλ and Sλ in 2.3) :

(K) K: A→ (B→A)

(S) S: A→ (B→C) → ((A→B)→(A→C))

2.5 Definition: Combinators are inductively defined as :

x,y,z,. . . are combinators

K and S are combinators

(ca) is a combinator, when c,a are combinators.

Variables should be understood as proofs of hypothetical assumptions, if needed. K and S are

constant as above and application (ca) is motivated by (→E). The crucial point is that one can

get rid of variables in any compound combinator and this will be exactly the deduction theorem

below.

Recall now that by axiom we actually mean axiom schema. Thus, K and S are proofs of any

formula obtained from ax.1 and ax. 2 by consistent instantiation. Or, equivalently, they have the

type schema described in (K) and (S) .

2.6 Lemma. PPo | SKK : A→A .

Proof. In the proof, the types of S and K are instantiated as to allow the application of (MP) ,

i.e. of the rule (→E) .

S: (A→ ((A→A)→A)) → ((A→(A→A)) → (A→A) K : A→((A→A)→A)
__

 SK : (A→(A→A)) → (A→A) K :

A→(A→A)

 __

1 2

 SKK : A→A

 ∆

Set I ≡ SKK, then I is a proof of A→A. Its intended meaning is the identity function of type

A→A (see later), Note that combinators code proofs in PPo. For example A → A is proved by

first applying (→E) to (an instance of) axiom S to axiom K : this gives (SK). Then apply (→E)

again to the theorem coded by (SK) and to axiom K : this gives ((SK)K), a proof of A→A.

2.7 Lemma ("Constructive" Deduction Theorem for PPo)

Let Γ, x: A |__ b : Β then there exists a term [x].b , such that

x∉FV([x].b) and Γ |__ [x]. b : A→B.

Proof (By induction on the structure of b)

1. b ≡ x Then A ≡ B . Recall that I : A→A and set [x].b ≡ I

2. x∉ FV(b) . Then the assumption x : A is not used in the derivation, i.e. Γ | b: B.

Now K: B→(A→B), thus Γ | Kb : A→B and set [x].b = Kb. (Clearly, the case b ≡ y ≠ x

could suffice for the inductive proof).

3. b ≡ cd. Then

 c : D→B d : D

 cd : B

has been applied.

Observe that, by induction, [x].c : A→(D→B) and [x].d : A→D . Thus

S : A→(D→B)→((Α→D)→(A→B)) [x].c : A→(D→ B)

S ([x].c) : (A→D)→(A→B) [x].d : A→D
__

 S ([x].c) ([x].d) : A→B .

Set then [x].b = S ([x].c) ([x].d). ∆

2.8 Theorem . If PPo | a : A , then there exists a closed λ-term a' s. t.

PNo | a' : A .

Conversely, if PNo | a : A, then there exists a closed SK-term a° s.t.

PPo | a° : A .

Proof. Use Kλ and Sλ to translate combinators into λ−terms. For the converse, translate

λx.... by [x].... and use induction and the lemma. ∆

1 3

For the reader familiar with Shoenfinkel-Curry's abstraction algorithms, by which one may embed

λ-terms into combinators, it should be clear that they are just a constructive investigation of the

classical Deduction Theorem, as pointed out by the last two results (see also Huet[1986]).

3. Reductions of proofs and terms.

In the previous section we were able to look at proofs as terms of a very simple language, indeed a

functional language. By this, the inhabited types of that language turned out to be exactly the
theorems of PNo. The first application of this analogy is now a connection between reducing

proofs and terms.

Let's define formally the usual mathemathical concept of instantiation :

3.1 Definition : Let b be a λ−term or a S-K term , then the term [a/x]b is inductively

defined , with a free for x in b , in the following way :

 - b ≡ x then [a/x]b ≡ a

 - x ∉ FV(b) then [a/x]b ≡ b

- b ≡ λy.c then [a/x]b ≡ λy.[a/x]c

- b ≡ c d then [a/x]b ≡ ([a/x]c) ([a/x]d)

(As usual, a free for x in b if there is no free occurence of x in b, which is in the scope

bound by a variable free in a).

3.2 Remark : Consider the following proof :

 [x : A]

 :

 b : B
 (→ Ι) ____________ (P.1)

 λx.b : A → Β a : A
 (→Ε) ____________________________________

 (λx.b) a : B

As x : A is "any hypothetical proof of A" and x may occur in b , this simplifies (reduces) to

:

 a : A

 : (P.2)

1 4

 [a/x]b : B

This passage corresponds to the following practice in Mathemathics. In order to obtain a proof

[a/x]b of B , depending on a specific proof a of A , one may more easily prove in general

that, "for any x : A " , b : B can be deduced and, then, apply the general proof λx.b of A →
Β to the specific proof a of A.

However, this indirect argument, logically reduces to the derivation of [a/x]b : B from a : A.

In conclusion, the proof (P.1) reduces to (P.2) and the terms (λx.b) a , [a/x]b respectively

code these proofs; this suggests a calculus of proofs axiomatizing this concept.

3.3 Definition : λ−calculus (λβ> or λο) is the calculus of proofs defined as λ-terms and

axiomatized by α) and β) plus the inference rules below which turn ">" into a reflexive,

transitive and substitutive relation :

α) λx.a > λy.[y/x]a

β) (λx.b)a > [a/x]b provided that a is free for x in b

Rules:

 (ρ) a > a

 a > b b > c
 (τ) __________________

 a > c

 a > b a' > b' a > b
 (µν) ___________________ (ξ) _________

 a a' > b b' λx.a > λx.b

Conventions: Recall that λ is a variable binder and bound variables may be freely renamed,

by (α). Therefore, given a , x and b , we may always consider b free for x in a , by

renaming of bound variables in a .

Remark. Consider the following derivation:

 c : A → Β [x : A]

1 5

 (→Ε) ______________________________ (P .3)

 cx : B

 (→ Ι) ___________

 λx.cx : A → Β

Similarly as before, one shows that λx.cx is a proof of A → B , under the uncancelled

assumption that c : A → Β . Thus, one may simplify (P.3) to

 c : A → Β (P .2)
This corresponds to the λβη> calculus which has the extra axiom:

η) λx.cx > c provided that x is free in c.

3.4 Definition : A λ−term a is in normal form iff it doesn't contain subterms of the form

(λx.b)c.

3.5 Definition : A λ-term a has normal form iff there exists a term a' in normal form

such that a > a'.

In Natural Deduction we say that a proof is in normal form if does not contain a (→ I) rule

followed by a (→ E) rule. This corresponds exactly to say that a term, viewed as a code for a

proof, cannot have subterms such as (λx.b)c . Indeed, (λx.b)c is formed first by abstraction,

i.e. (→ I) , then by application, i.e. (→ E).

Notice now that, if a term a is in normal form , there are only two possibilities:
(i) a ≡ xb1......bn with b1......bn in normal form,

(ii) a ≡ λx.b with b in normal form.

3.6 Proposition :
1) Kλab > a , Sλabc > ac(bc)

2) Let a and b be closed terms in normal form. Assume that a : (A→(B→Α)) and

b : (A→(Β→C))→((Α→Β)→(Α→C)) . Then a ≡ Kλ and b ≡ Sλ .

Proof
1) By sequential applications of the (β) axiom :

Κλab ≡ (λxy.x)ab > (λy.a)b > a .

Analogously :
 Sλabc ≡ (λxyz.xz(yz))abc > (λyz.az(yz))bc > (λz.az(bz))c > ac(bc).

2) Let a be a closed term in normal form whose type-scheme is : A→(Β→Α). Since a is in

normal form, it has one of the forms :
 xb1...bn or λx.b (n≥0)

1 6

The first form is impossible , since a is closed. Hence , for some b , a ≡ λx.b ; that is, (→Ι)
has been used in the deduction of type-scheme of a :

 [x : A]

 :

 b : (Β→Α)
 (→Ι) ________________

 (λx.b) : A→(Β→Α)

Since x has a type A which may be atomic, x must occur in b in a non function- position, i.e.
b cannot be of the form (xc1...cm+1) . On the other hand, b cannot be of the form

(λy.c)c1...cm+1 as it would not be in normal form; nor of the form zc1...cm because z would

be free in b , while we assumed that b contains at most x free.

Hence b has one of the forms : - b ≡ x , then a ≡ λx.x : A→Α which is impossible because this is a scheme different from A→(Β→Α) .
- b ≡ λy.c , then the deduction coded by a had to be :

 [x : A] [y : B]

 c : A
 (→I) _________________

 b ≡ λy.c : B→Α
 (→Ι) __________________
 a ≡ λxy.c : A→(Β→Α)

Consider now the structure of c. It cannot be of the form (λw.d) because it would give a

composite type-scheme. In addition c must be in normal form, because a is in normal form ; it

must not contain free variables different from x and y because it has to be closed. Thus c ≡ x
or c ≡ y.

Let's suppose that c ≡ y , then a ≡ λxy.y : A→(Β→Β) since :

 [x : A] [y : B]

 y : B

 λx.y : B→B

1 7

 a ≡ λxy.y : (A→(B→B))

which is impossible. Thus c ≡ x and then a > λxy.x ≡ Κλ.
(Analogously for Sλ). ∆

Thus Kλ and Sλ are the only closed normal forms of type schemas corresponding to the axioms

for PPo. 3.6.1 gives their operational behaviour. In accordance to these facts, define the theory

of proofs of PP0 as follows.

3.7 Definition : Combinatory Logic (CL>) is the calculus of proofs of PP0 axiomatized

by:

 Kab > a

 Sabc > ac(bc)

plus inference rules (ρ), (µν) and (τ) in 3.3.

3.8 Corollary : Let [x].b be defined as in 2.7 . Then ([x].b)a > [a/x]b .

Proof: (By induction on the structure of b). Consider the possible cases for b and use the
constructive version of the deduction theorem in PP0.

- If b = x then [x].b ≡ SKK ≡ I , thus (SKK)a > Ka(Ka) > a = [a/x]b .

- If x∉FV(b) then [x].b ≡ Kb and Kba > b ≡ [a/x]b .

- b = cd; then [x].b ≡ S([x].c)([x].d) and S([x].c)([x].d)a > ([x].c)a(([x].d)a) > [a/x](cd) . ∆

The "=" relation is the simmetric and transistive closure of ">" . In the calculi below we will

directly define equality between terms.

4. First order logic or types depending on terms.

As usual in Logic and Mathematics, most relevant facts are expressed by an essential use of

assertions on arbitrary elements (of a given set or type). That is, mathematical pratice relies on the

use of predicates which include variables and on quantification with respect to variables. A Type-

theoretic foundation of this common practice has been given by the work of Martin-Löf. This

method, of course, is widely used also in Computer Science (see Bruce&Longo[1988] for a recent

application to the description and interpretation of "record types"). As before, we only describe

the logic "core" of first order Natural Deduction.

1 8

The expressions of the language we are going to define are terms and types (or formulae). They

will be defined by combined induction as terms may contain types and types may contain terms.

We write capital letters for expressions which are types. A:Tp is short for "A is a type". In

contrast to the propositional case, we only consider typed terms (see the Remark on typability, in

§2).

The base is given by a collection of variables x, y, z.... and of atomic types or predicates.

Conventions: λ, ∀, ∃ are variables binders. An unbound variable x in exp is free in exp

(notation: x∈FV(exp)). The substitution of a for x in exp is defined by induction, provided

that a is free for x in exp, as usual.

Here is a (combined) inductive definition of term and type expressions. The formation and

deduction rules below will select the (well) typed and well formed terms and types.

Term expressions: a := var | fst a | snd a | (aa) | <a,a> | (λvar:A.a)

Type expressions: A := Atomic | (∀var:A.A) | (∃var:A.A)

The derivations from lists of assumptions (or assignement of types to variables, see below) are

summarized as judgements, following Martin-Löf terminology. Γ(x:A) stands for the ordered

list Γ extended with (x:A).

Judgements: Γ ok ; Γ |_ A : Tp ; Γ |_ A = B : Tp ; Γ |_ a : A ; Γ |_ a = b : A

.

Well formed assumptions:

 (Empty) ∅ ok (the empty assignment is well formed)

 Γ ok Γ |_ A : Tp

(Context) ________________ for x∉FV(Γ)
 Γ(x:A) ok

 Γ ok

(Assump) _______ for (x : A)∈Γ
 Γ |_ (x:A)

1 9

Circular clashes are avoided by the assignement rules, e.g. {(x:A(y)),(y:B)} is not an ok

assignement.

Equality "=" is a reflexive, symmetric and transitive relation, which is congruent w.r.t. types

according to the following rules:

a : A A = B : Tp

(Congr.1) ________________

 a : B

a = b : A A = B : Tp

(Congr.2) ___________________

 a = b : B

Remark: The following rules are admissible. For any judgement J ,

Γ |_ a : A Γ,(x:A) |_ J

(Sub) ______________________

 Γ |_ [a/x]J

Γ |_ a = b : A Γ |_ [a/x]J

(Congr) ________________________

 Γ |_ [b /x]J

The last rule is needed, as may others below, since atomic types may contain term variables, and,

hence, type expressions may do so. Substitution of variables by terms (or terms by equal terms)

for atomic types (i.e. predicates) will be discussed in the general setting of mathematical

extensions of the system below (see the Intermezzo).

Type Formation and Equality:

 A :Tp [x:A] |_ B : Tp A : Tp [x:A] |_ B : Tp
 _________________ __________________

 (∀x : A . B) : Tp (*) (∃x : A . B) : Tp (*)

2 0

 A = C : Tp [x:A] |_ B = D : Tp A = C : Tp [x:A] |_ B = D : Tp

 ________________________ ________________________
 (∀x : A . B) = (∀x : C . D) : Tp (∃x : A . B) = (∃x : C . D) : Tp

Remark: As for (*) , observe that in B there is no free variable whose type depends on x.

Conventions: 1 - If x∉FV(B), set A→B for ∀x:A.B and A×B for ∃x:A.B .

2 - In the rules we are only writing the part of the assumptions which is discharged in the

conclusion. Thus a jugement J in a rule stands for Γ |_ J (see 4.1(ii)).

Dependent products (introduction, elimination, equality):
 [x:A] |_ b : B

 (∀I) _________________

 (λx : A . b) : (∀x : A . B)

 A = C [x:A] |_ b = d : B
 (∀I=) ________________________

 (λx : A.b) = (λx : C.d) : (∀x : A . B)

 f : (∀x : A . B) a : A

(∀E) ___________________

 (fa) : [a/x]B

 f = g : (∀x : A . B) a = b : A

(∀E=) _______________________

 (fa) = (gb) : [a/x]B

 [x:A] |_ b : B a : A
(∀β) ____________________

 (λx : A.b)a = [a/x]b : [a/x]B

2 1

 f : (∀x : A . B)

(∀η) ___________________ x not free in f

 (λx : A . fx) = f : (∀x : A . B)

Dependent sums (introduction, elimination, equality):

 a : A b: [a/x]B
(∃I) _________________

 <a,b>: ∃x:A.B

 a = c : A b = d: [a/x]B
(∃I=) ______________________

 <a,b> = <c,d>: ∃x:A.B

 b: ∃x:A.B

(∃E) ___________________

 fst b : A snd b : [fstb/x]B

 b = c : ∃x:A.B

(∃E=) _____________________________

 fst b = fst c : A snd b = snd c : [fstb/x]B

 a : A b: [a/x]B
(∃β) ______________________________

 fst<a,b> = a : A snd<a,b> = b : [a/x]B

 c : ∃x:A.B

(∃η) __________________

 <fstc,sndc> = c : ∃x:A.B

2 2

4.1 Remarks: (i) - By the rules, x:A is allowed in judgements only if x∉FV(A).

(ii) - Note that (∀I) could be equivalently written as

 Γ |_ A : Tp Γ(x:A) |_ a : B

 (∀I) ______________________

 Γ |_ (λx : A. a) : (∀x : A. B)

thus, by the rules, when (∀I) is applied, x is not free in uncancelled hypothesis. Similarly in

the related cases.
(iii) One may equivalently define PN1 as an extension of PNo, but the expressions and rules of

PNo may be derived from the presentation just given. Since, for x∉FV(B), A→B ≡ ∀x:A.B ,

one has that (→I) and (→E) in PNo are special cases of (∀I) and (∀E) . Observe that, if

there are no atomic types with free variables, PN1 would coincide with PNo .

4.2 Definition: PN1 is the deductive system defined above and λP is the calculus of its

proofs (as terms) .

The reader may recognize two familiar properties of first order Logic in the theorems in

Proposition 4.3: Proposition 4.3 explicitely gives their constructive proofs.

4.3 Proposition. 1) If x∉FV(B) , then exists c such that :

 PN1 |_ c : (∀x : A.(B→C))→(Β→∀x : A.C).

2) If x∉FV(C) , there exists c such that :

 PN1 |_ c : (∀x : A.(B→C))→((∃x : A.B)→C) .

Proof
1) [z : (∀x : A.(B→C))] [x: A]
 _____________________________________ (∀Ε)

 [y : B] (*) zx: B→ C
___ (→Ε)
 zxy : C
 ______________________ (∀Ι)

 λx : A.zxy : (∀x : A.C)
 _______________________________ (→Ι)

 (λy : B.λx : A.zxy) : (B→(∀x : A.C))
__ (→Ι)

 (λz : (∀x : A.(B→C)).λy : B.λx : A.zxy) : (∀x : A.(B→C))→(Β→(∀x : A.C))

2 3

where y is a fresh variable s.t. y∉FV(BCA) ;
(*) x∉FV(B) as (y:B) follows, in the ordered set of assumptions, (x:A).

2) [y : (∃x : A.B)]
 _________________________ (∃Ε)

 [z : (∀x : A.(B→C))] fst y : A snd y : [fst y/x]B

 ___ (∀Ε)

 z(fst y) : ([fst y/x]B)→C (**) ↓

 __ (→Ε)

 z(fst y)(snd y) : C
 ___ (→Ι)

 λy : (∃x : A.B).z(fst y)(snd y) : ((∃x : A.B)→C)
 __ (→Ι)
 λz : (∀x : A.(B→ C)).λy : (∃x : A.B).z(fst y)(snd y) : (∀x : A.(B→C))→((∃x : A.B)→C)

(**) by assumption x∉FV(C) . ∆

Intermezzo (on mathematical theories)

We presented so far only the "logical rules" for propositional and first order systems, within the

constructive perspective of Type Theory. Mathematical practice, though, and the needs of

Computer Science require the investigation and use of specific extensions of these core theories.

At this regards, in Constructive Natural Deduction, i.e. in this type-theoretic fomalization of first

order deduction, one has more expressive power than in the usual approaches to Natural

Deduction. Besides "proof terms", a crucial difference is in the representation of sorts and

propositions both as types, while sorts and formulae are different entities in Logic.

Observe that the extensions are usually given by adding constant symbols, i.e. predicates and

functions, of various sorts, whose behaviuor is given by telling their "arity" and by a bunch of

axioms. That is, sorts, predicates, functions and axioms of a first order theory can be represented

in a signature (Σ , say) in the following way (see Harper&al[1987]). Judgements, then, depend

also on signatures .

Judgements:
Σ ok ; Σ |_ Γ ok ; Σ, Γ |_ A : Tp ; Σ, Γ |_ A = B : Tp ; Σ, Γ |_ a : A ; Σ, Γ |_ a = b :

A ;
 X : [...]A gives the "arity" of X.

2 4

Well formed signatures:
 (Axiom) ∅ ok (the empty signature is well formed)

 Σ |_ Γ ok

(Sign.1) ____________ for X not in Σ
 Σ (X : [Γ]Tp) ok

 Σ, Γ |_ A : Tp

(Sign.2) ____________ for X not in Σ
 Σ (X : [Γ]A) ok

Constants:

Sorts : X: []Tp
Predicates : X : [x1:A1, ... , xn:An]Tp where Ai : Tp , for all i ≤ n ;

Functions : X : [x1:A1, ... , xn:An]A0 where Ai : Tp , for all i ≤ n ;

Axioms : X : []A where A : Tp with no free variables

The various formation, elimination and introduction rules follow the pattern below, where K : Tp
or K = Tp and the constant X appears as X : [x1:A1, ... , xn:An]K in Σ :

 Σ ok Σ, Γ |_ ai : [a1/x1, ... , ai-1/xi-1]Ai 1≤ i ≤ n

 (X) __

 Σ, Γ |_ X(a1, ... , an) : [a1/x1, ... , an/xn]K

 Σ ok Σ, Γ |_ ai = bi : [a1/x1, ... , ai-1/xi-1]Ai 1≤ i ≤ n

 (X=) __

 Σ, Γ |_ X(a1, ... , an) = X(b1, ... , bn) : [a1/x1, ... , an/xn]K .

4.4 Remark. Another aspect of the greater expressive power of Type Theory, is given by the

(∃E) rule. The "there exists elimination" rule is usually formalized in Natural Deduction as

 ∃x:A.B B |_ C
(∃E)1 _____________ with x∉FV(C)

 C

2 5

while the (∃E) in dependent sums above is equivalent to

 a : ∃x:A.B x : A, y : B |_ c : [<x,y>/z]C
(∃E)2 _______________________________

 (Let <x,y> = a in c) : [a/z]C

where z may occur free in C . Thus (∃E)2 is much stronger than (∃E)1, since, by the proof

terms, one has both first and second projections, as in (∃E). This requires a little proof. First

observe that, rules corresponding to (∃E=), (∃β), (∃η) for the (Let..... in...) may be easily given,

e.g.

 <a,b> : ∃x:A.B x : A, y : B |_ c : [<x,y>/z]C
(∃β)2 ___________________________________

 (Let <x,y> = <a,b> in c) = [a/x,b/y]c: [<a,b>/z]C

 c: ∃x:A.B
(∃η)2 ___________________________

 (Let <x,y> = c in <x,y>) = c: ∃x:A.B .

(∃E=) is obvious. Then define, for a: ∃x:A.B ,

fst a = Let <x,y> = a in x : A

snd a = Let <x,y> = a in y : [fsta/x]B .

What needs to be proved is that (snd a) is well typed. Indeed,
x:A, y:B |_ x = fst<x,y> : A by (∃β)2
x:A, y:B |_ B = [fst<x,y>/x]B : Tp by B = [x/x]B

x:A, y:B |_ y : B

x:A, y:B |_ y : [fst<x,y>/x]B , which is identical to [<x,y>/z][fstz/x]B.
In conclusion, the rules (∃E)2, (∃E=)2, (∃β)2 and (∃η)2 instead of the corresponding rules for

PN1 above, give an equivalent systems, which is strictly stronger than the usual Natural

Deduction approach to existential quantification.

5. Second order logic and explicit polymorphism.

2 6

The working mathematician often makes assertions concerning arbitrary functions in a given

collection (when describing integration, say) or even about arbitrary sets within a given category

or class of sets (all c.p.o.'s have a least element...).

In the previous section we have been dealing with a language for higher type functions.

Functional abstraction (i.e. λx....) was defined w.r.t. to variables ranging over ground elements,

functions, functionals and so on, in any finite higher type. Note that functional abstraction may be

understood as a form of quantification; thus, as each boolean valued function determines a set,

abstracting w.r.t. a variable which ranges over boolean valued functions is like quantifying over

sets of a given type.

However, we were not allowed to quantify explicitly over types. Indeed, there is some implicit

quantification over types in the systems mentioned so far. Church-Curry types are defined as type

schemata: e.g. the identity λx.x has type schema α→α , i.e. λx.x has type σ→σ for any type

σ, or the collection of its possible types is obtained by consistently instantiating α in α→α by

every type.

Mathematical practice and this implicit use of quantification suggest a language where one could

explicitly consider all types: thus, a higher order language, with quantification over types. This

language is the core of the nowadays widely known approach to "modularity" in functional

programming via second order or "explicit" polymorphism.

The expressions of the language, i.e. terms and types (or formulae), will be defined by

simultaneous induction as before, with the further possibility of including the expression Tp in

their formation.

We write capital letters to stress that an expression is a type; lower-case letters, though, may also

be types. A : Tp is short for "A is a type".

The base is given by a collection of variables x, y, z.... X, Y, Z... and of atomic types or

predicates.

We mantain the usual conventions on variable binders (λ and ∀), free variables and

substitution. A definition, by combined induction, of term and type expressions is first given, as

in the first order case. The rules pick up the legal ones.

Term expressions: a := var | (aa) | (aA) | (λvar:A.a) | (λVar:Tp.a)

Type expressions: A := Var | Atomic | (∀var:A.A) | (∀Var:Tp.A)

The judgements and related conventions are the same as for PN1. As PN2 below is a proper

extension of PN1, we only summarize the new rules.

Well formed assumptions:

2 7

 Γ ok

(Context2) _________ for X∉FV(Γ)
 Γ(X : Tp) ok

 Γ ok

(Assump2) _________ for (X : Tp)∈Γ
 Γ |_ (X : Tp)

Equality "=" is a congruence as in the I order case. The II order type formation rules include the

following crucial impredicative cases:

Type Formation and Equality:

 [X : Tp] |_ B : Tp

(∀X : Tp . B) : Tp (*)

 [X : Tp] |_ B = D : Tp

 (∀X : Tp . B) = (∀X : Tp . D) : Tp

(*) In B there is no free variable whose type depends on X .

II order dependent products (introduction, elimination, equality):

 [X : Tp] |_ b : B

 (∀2I) ___________________

 (λX : Tp . b) : (∀X : Tp. B)

 [X : Tp] |_ b = d : B

2 8

 (∀2I=) ___________________________

 (λ X : Tp.b) = (λX : Tp.d) : (∀X : Tp . B)

 f : (∀X : Tp . B) A : Tp

(∀2E) ____________________

 (fA) : [A/X]B

 f = g : (∀X : Tp . B) A = B : T p

(∀2E=) _______________________

 (fA) = (gB) : [A/X]B

 [X : Tp] |_ b : B A : Tp

(∀2β) ______________________

 (λX : Tp.b)A = [A/X]b : [A/X]B

 f : (∀X : Tp . B)

(∀2η) ____________________ X not free in f

 (λX : Tp. fx) = f : (∀X : Tp . B)

5.1 Definition: PN2 is the deductive system defined above and λP2 is the calculus of its

proofs (as terms) .

The system PN2 is a (revisited) fragment of Coquand-Huet's "Calculus of Constructions" (see

Hyland&Pitts[1987]).

5.2 Remark: (i) - When (∀I) is used w.r.t. to a non empty list Γ of assumptions, X is not

free in uncancelled assumptions, by the same argument as in (4.1).
(ii) If there are no atomic types with free variables, λP2 coincides with Girard-Reynolds' second

order λ-calculus, since A→B ≡ ∀x:A.B .

The very elegant and relevant fact, in second order logic, is that also the connetives {∧,∨, ∃} and

the absurdum ⊥ , are derivable in this purely implicative fragment, PN2, based only on ∀ and

2 9

→ . This was discovered, in Logic, long ago. Observe that second order quantification is

essential for this.

5.3 Definition: ⊥ ≡ ∀X : Tp.X .

It is sound to consider ⊥ the "absurdum" or constantly false predicate, in view of the following

theorem. It proves that "ex falso quodlibet" (1) and that "if one can prove any proposition (type)

then one can prove falsum" (2).

5.4 Theorem. ⊥ A : Tp X : Τp |__ b : X
 (1) _________ ; (2) ______________

 A (λX : Tp.b) : ⊥
Proof. Indeed, we can give a constructive version of (1) , the absurdum rule of Intuitionistic

Logic, as a derived rule.

1) Let a : (∀X : Tp.X) ≡ ⊥ , fixed a generic A : Tp ,we have:

 a : (∀X : Tp.X) A : Tp
 ______________________________ (∀2Ε)
 (aA) : A

2) This second inference is just a trivial application of (∀2Ι). ∆

5.5 Definition:

 A ∧ B ≡ ∀Y : Tp.((A →(Β→Y))→Y)

 A ∨ B ≡ ∀Y : Tp.((A→Y) ∧ (B→Y)→Y) .

5.6 Theorem.

 a : A b : B a : A ∧ B
 1) ________________________________ ; 2) _________

 λX : Tp.λp : (A→(B→X)).pab : (A ∧ B) aAKλ : A .

Proof

1)

 a : A [p : (A→(B→X))]

 ____________________________________ (→E)
 b : B pa : (B→X)

3 0

 _______________________________________ (→E)

 pab : X [X : Tp]

 ___ (→I)

 λp : (A→(B→X)).pab : (A→(B→X))→X
 ___ (∀2I)

 λX : Tp.λp : (A→(B→X)).pab : (∀X : Tp.((A→(B→X))→X))

2) Analogously :

 a : (∀X : Tp.((A→(B→X))→X)) A : Tp
 __

(∀2E)
 aA : (A→(B→A))→Α Kλ: A→(Β→A)

 ___ (→E)
 aAKλ : A

Note that A is a generic type and Kλ is uncancelled because its type-scheme is a theorem .

Use KλI to obtain the second projection. ∆

5.7 Definition:

 ∃X : Tp.A ≡ ∀Y : Tp.((∀X : Tp.(A→Y))→Y) .

More generaly, one may derive also a first order existential quantifier, by setting, for B : Tp ,

∃x : B.A ≡ ∀Y : Tp.((∀x : B.(A→Y))→Y) .

In either case, the intuitive meaning of "∃" may be understood by instantiating Y by ⊥.

Informally, if ~A (≡ A→ ⊥) is the negation of A :

 ∃X : K.A ≅ ~ ∀X : K.~A

for K : Tp or K = Tp . However, if defined in this way , i.e. by using " ~ ", "∃" would not

give the results below!

5.8 Definition: <a,b>A ≡ λY : Tp.λx : (∀X : Tp.A→Y).xab .

5.9 Remarks: 1 - Note that [a,b] ≡ λx.xab is the classical type-free pairing and may be

obtained from <a,b>A by erasing all type information.. As in the type-free case, the second

3 1

order typed pairing is not surjective, i.e. for no projections fst([a,b]) and snd([a,b]) one has that

[fst([a,b]), snd([a,b])] = [a,b].

2 - Definition 5.8 and the theorems below are only stated for K = Tp . They also hold for K:Tp.
In particular, <a,b>A ≡ λY : Tp.λx : (∀x : C.A→Y).xab , for C : Tp , is a first order pairing.

5.10 Theorem.

 B : Tp b : [B/X]A
 (∃2I) ___________________________

 <B,b>A : (∃X : Tp.A)

Proof

 [Y : Tp] [x : (∀X : Tp.A→Y)] B : Tp
 __ (∀2E)

 xB : [B/X]A→Y b : [B/X]A
 __ (→E)

 xBb : Y
 __ (→I)

 (λx : (∀X : Tp.A→Y).xBb) : ((∀X : Tp.A→Y)→Y)
 ___ (∀2I)

 (λY : Tp.λx : (∀ X : Tp.A→ Y).xBb) : (∀ Y : Tp.(∀ X : Tp.A→ Y)→ Y)

∆

Also (∃2E) is a derived rule :

5.11 Theorem.

 a : ∃X : Tp.A [X : Tp , x : A] |__ c : C
 (∃2E) __ if x,X∉FV(C)

 aC(λX : Tp.(λx : A.c)) : C .

Proof. Let a ≡ <B,b>A ≡ λY : Tp.λx : (∀X : Tp.A→Y).xBb , i.e.

a : (∃X : Tp.A) ≡ ∀Y : Tp.(∀X : Tp.A→Y)→Y) , where B : Tp and b is a term.

Compute now :

3 2

 [X : Tp , x : A]

 :
 c : C

(∀I)* a : (∀Y : Tp.(∀X : Tp.(A→Y)→Y)) C : Tp λx : A.c : A→C

(∀2E) __________________________________ _____________________________

(∀2I)

 aC : (∀X : Tp.(A→C)→C) λX : Tp.(λx : A.c) : (∀X : Tp.(A→C))

(∀2E)*
__

 aC(λX : Tp.(λx : A.c)) : C

* Note that in these derivations we used the hypothesis X,x∉FV(C), as we applied (∀I) ≡ (→I)

and (∀E) ≡ (→E). ∆

5.12 Corollary. <B,b>A C (λX : Tp.λx : A.c) = [B/X,b/x]c : C

Proof. (λY : Tp.λx : (∀X : Tp.A→Y).xBb) C (λX : Tp.λx : A.c) for Y∉FV(A)

 = (λx : (∀X : Tp.A→C).xBb) (λX : Tp. λx : A.c)

 = (λX : Tp.λx : A.c) Bb

 = [B/X,b/x]c . ∆

5.13 Remark. (On second order "there exists elimination" rules).

(i) For derived second order existential quantifier it is not possible to obtain projections at all, in

the sense, say, of the first order (∃E) in §.4. As for the first projection, one should take C ≡ Tp

and c ≡ X , but the result would not be in the language. The second projection is impossible since

one should take C ≡ A , which may depend on X, (cf. 4.4).

Note that, if one does not have predicates with free (term) variables, as in Girard's system F ,

then, after erasing proof terms, (∃2E) becomes exactly the second order rule for existential

elimination in Natural Deduction.
(ii) However, one may consistently extend PN2 by a stronger rule. Namely, define pairing <,>

, as an independent function symbol, by rules such as (∃I) and (∃I=) in §.4 (where A becomes

Tp). Then set

 a : (∃X : Tp.B) [X : Tp , x : B] |__ c : [<X,x>/z] C
 (∃ 2E)2 ___

X,x∉FV(C)

3 3

 (Let <X,x> = a in c) : [a/z]C

where, now, z may occur in C and, hence, C depends indirectly on X , x . By this, (∃2E)2

is not derivable. Clearly, then, the behaviour of the (Let ... in ...) terms must be formalized by

rules analogue to the (∃E=), (∃β), (∃η) rules in remark 4.4 (where, again, A is Tp and the

dependence of C on X, x must be made indirect as above). By this indirect dependence,

though, one cannot have either projection.

5.14 Remark. (On first order "there exists elimination" rules).

Following remark 5.9.2, one may derive a first order "there-exists-elimination" rule by taking K

= B : Tp. Then 5.11 proves

 <b,a>A : (∃x': B.A) [x': B, x : A] |__ c : C
 (w∃E) __ with x',x∉FV(C) .

 (<b,a>A)C(λx': B.(λx : A.c)) : C

By corollary 5.12, also a corresponding (w∃β) is derivable and one may obtain the first

projection. Just take c ≡ x' and C ≡ B , which is possible, as B cannot depend on x', x .

Then, by 5.11 and 5.12, one has
(<b,a>A)C(λx': B.(λx : A.x)) = b : B .

However, these rules are weak and there is no way to derive the second projection, in contrast to

the (∃E), (∃β) rules given in §.4 for the first order case, since A may depend on x' , and, hence,

one cannot set C ≡ A . Similarly, one cannot derive an analogue to (∃η). Note also that, if one

does not have predicates with free (term) variables, than (w∃E), with no proof terms, is exactly

the first order rule for existential elimination in Natural Deduction.

Mathematical extensions are handled similarly as for PN1, by taking into account that one has

higher order arities and sorts.

6. Semantic interpretation

As already mentioned, we just presented the core Theory of "propositions-as-types". However,

this is where (most of) the semantic challanges come in. The point now is to define or construct

sets, categories, objects or alike, in a way that the formal, linguistic, notions introduced so far

will be enriched by meaning and consistency over these structures, which have an independent

foundation from Type Theory.

It is clear that if we can do so for the last theory of types examined, then we would be able to
interpret also the other theories, as the latter is an extension of all of them. Moreover, λP2
presents a very challenging problem: the definition of types is impredicative, or PN2 is an

3 4

impredicative theory of types or propositions. In short, when defining proper second order

types, the quantified types are defined by using quantification over all types, including the one

which is being defined. Indeed, recall

 [X : Tp] |_ b : B

 (∀2I) ___________________

 (λX : Tp . b) : (∀X : Tp. B)

 f : (∀X : Tp . B) A : Tp

(∀2E) ___________________

 (fA) : [A/X]B

where (λX:Tp.a) : (∀X:Tp.B) summarizes also that (∀X:Tp.B) : Tp (see §.5).

Since we want to focus only on the semantic understanding of impredicativity and keep the

presentation elementary, in the sequel we will restrict ourselves to Girard's system F, i.e. to the
second order fragment of PN2, and we will not discuss here the interpretation of dependent

types, i.e. of PN1. To be precise, system F, as a pure theory, is equivalent to λP2. The ideas

presented in this paper brought again to the limelight the "realizability interpretation" of

impredicative type theory, as pointed out in in Hyland[1987].

A full categorical account of dependent types, including the theory of constructions, can be now

found in Hyland &Pitts[1987] (see also Ehrhard[1988] and Robinson[1989]).

Call now M the interpretation of Tp. Then (∀2I) roughly means that the interpretation of

(∀X:Tp.B) must be an element of M, even though its definition may use M itself, as (∀X:Tp.B)

contains Tp . Thus, it may not seem possible to construct the entire set or structure M stepwise,

i.e. by defining first its elements, as we may know them only after knowing all of M (see (0)

below).

The method below for understanding this circularity examplifies a crucial point of "meaningful
(and informative) interpretations": the impredicative calculus λP2 is given meaning in the familiar

powerset of a (countable) set. As discussed in the introduction, this is meant to provide a

conceptual environment for an explanation of impredicative Type Theory, since we understand it

independently and better, we claim, than (∀X:Tp.B) : Tp .

Semantics of type assignement and of typed terms.

3 5

A distinction must be made when discussing the semantics of systems like those described in the

previous sections. In §.2 types are assigned to type-free terms: rule (→I) , say, derives type

schema (A→A) for the term λx.x , the functional program computing the identity function.

λx.x , though, carry no type information: it is a type-free term and (→I) tells us that it has all

types whose schema is (A→A).

Thus, the meaning of an assignement of types must be given over a model for the type-free

calculus, (D, .), as one needs to interpret first untyped terms. Then a derivation |_ a:A will

hold in D iff the interpretation in D of the type-free term a is in the interpretation of the type A

as a subset (or a substructure) of D .

We will not get into the semantics of type assignement as this is a well settled part of the

connection between type-free and classically typed λ-calculus (Barendregt&al[1983] first proved

a completeness result, Hindley[1983] gives an alternative tidy presentation; see Coppo[1983],

Longo& Martini[1986], Hindley&Seldin[1986], Mitchell[1986,1988] for further references).
In contrast to λo, the terms of the calculi of proofs of PN1 and PN2 are typed. Then rules such

as (∀I) specify their types (or select the legal terms of the typed laguage toghether with their

types). For example, by (∀I) in PN1 one may deduce

(λx:A.x) : (A → A)

from the derivation [x:A] ...x:A ; that is for any type A , λx:A.x is the typed identity of type

A→A.
In the second order case, λP2 , the metalinguistic or implicit derivation we just made can be

explicitly formalized. That is the deduction

"for any type A, λx:A.x is the typed identity of type A → A"

becomes

[X:Tp] (λx:X.x) : (X → X)

and (∀2I) gives

(λX:Tp.λx:X.x) : (∀X:Tp.X → X) .

Next we will discuss the meaning of the later syntactic constructs.

The model investigated is built out of a type-free structure: Kleene's applicative (ω,.) . However,

the construction works over any partial Combinatory Algebra, and, thus, on any model of the

type-free λ-calculus; in this case the model would yield a complete semantics also for type

assignement, as described by PNo (see Scott[1976], Hindley[1983], were the modest sets are

called "the quotient semantics of types").

Types as modest sets.

There are several general definitions of what the semantics of impredicative II order types should

be (see Bruce&al[1986], Seely[1986]). In this section, we first consider a very simple
interpretation of λP2, which satisfies the requirements in Bruce&al[1986] and is based on the

3 6

early work of Girard[1971] and Troelstra[1973]. In §.6 -7, though, we also set the basis for a
more elaborate understanding of λP2 as described in §.8. There the meaning of (the

impredicative core of) PN2 will be better given by providing a category-theoretic explanation of

the (impredicative part of) the previous construction. This is done within a model of IZF

(Intuitionistic Set Theory), which allows a "set-theoretic" understanding of a calculus which has

no classical set-theoretic model. Let's informally summarize the main steps of the abstract notion

and hint the "naïve" interpretation. Later we will construct the model, which is informative even

without a general presentation of what a model should be. (Notation: unless otherwise stated, f

: A → B or f∈(A → B) is an arbitrary function from the set (or class) A to the set (or class)

B . Indeed, we first argue in the category Set of sets and functions)

The intended operational meaning of second order types is that a term (λX:Tp.a) of type

(∀X:Tp.B) is a procedure which takes a type C, say, as input and gives as output the term

[C/x]a of type [C/x]B. This is exactly what (∀2E) says. As for the interpretation over a

mathematical structure, assume that Tp is interpreted as the set M. Then:

1 - Write first (∀X:Tp.B) as ∀(λX:Tp.B) , i.e. understand ∀ as a map from (Tp → Tp) to

Tp, as it turns the map λX:Tp.B in (Tp → Tp) into a type. Thus the interpretation of ∀
should be a map from M→M to M .

2 - Define [c]ξ as the interpretation of the type or term c under environment ξ and set

f = [(λX:Tp.a)]ξ . Then, by (∀2E) and the way we understood it before,

f: M → ∪C∈M[B]ξ[C/X], with f(C)∈ [B]ξ[C/X] .

This idea corresponds to the notion of dependent or indexed product in Set Theory: any f as
above is an element of the set-theoretic product ΠC∈M[B]ξ[C/X], indexed over the set M of

types. In short, assume that g∈(M→M) interprets λX:Tp.B : (Tp → Tp) , then

f∈ΠC∈Mg(C) = ΠC∈M[B]ξ[C/X]
and ΠC∈M[B]ξ[C/X] is an element of M, i.e. a type.

Thus, one has to find a set, M, with the following closure property: it must be closed by products

indexed over the set M itself. That is, for all functions g: M → M we want

(0) Πe∈Mg(e) ∈ M .

This property interprets in M the circularity of (∀X:Tp.B) : Tp , the crucial judgement of

impredicative Type Theory. In categorical terms (w. r. t. the category Set), this means that we

want a full subcategory M of Set which is cartesian closed, has all products indexed by the set
Mo of objects of M and the embedding of M in Set preserves function spaces, finite products

and Mo-indexed products. (For a general definition of categorical model for system F, along this

naive idea, can be found in Pitts[1987] and Meseguer[1989]). Reynolds [1984] has shown that
this naïve approach leads to a paradox, by an informative result on models of λP2 (see also

Reynolds&Plotkin[1988]). The following is a simple cardinality argument.

3 7

Assume that a naive interpretation of λP2 could be given, as above. That is, that there is a set

N such that

A→B∈N for A,B∈Ν
Πe∈Ng(e)∈N for g: N → N .

The interpretation would be non trivial if there were a set A∈N such that #A > 1 .

Define then F: Ord → N by

F(0) = A

F(α + 1) = F(α) → F(α)

F(γ) = ΠB∈Ng(B) for a limit ordinal γ, where g(B) = if B∈{F(α) | α < γ} then B,

else A .

By this α < β ⇒ # F(α) < # F(β) , which is impossible, as Ord is not a set. Therefore for

any A∈N , one has #A ≤ 1 . And the model trivializes (similarly as in any naïve attempt to find

in Set a model for the type-free λ-calculus).

However, both the simple arguments above and the more complex one in Reynolds[1984] are

given in classical ZF and do not hold in IZF.

In §.8, we prove that the naïve interpretation of second order types as indexed products can be

recovered provided that the model is turned into an internal category of a suitable topos theoretic

model of IZF, namely the effective topos Eff of Hyland (see Hyland[1982,1987], Pitts[1987]).

In that frame, products are isomorphic to intersections (theorem 7.4). For convenience, in the

exposition, we may avoid any explicit use of Topos Theory by using as categorical frame the

category ω-Set below, which has a "concrete" description as a category of sets with a realizability

relation (the correctness of this replacement is explained in §.8). By this we intend to provide an

elementary categorical justification of the nowadays well known interpretation of types as quotient

subsets of ω , the natural numbers. Let's first review this interpretation of types, simply and

modestly, as quotient sets, esentially due to Kreisel, Girard, Troelstra and Scott. The current

understanding of the higher order types by quotient sets and internal categories, which we

develop here, has been first suggested by Moggi and widely developped by several authors in

Category Theory (Rosolini[1986], Hyland[1987], Hyland&al[1987], Carboni&al[1987],

Bainbridge& al[1987], Robinson[1989], Asperti&Longo[1990]...)

The objects of the category PER below are equivalence relations on subsets of the natural

numbers or partial equivalence relations (p.e.r.'s). Morphisms are defined by Kleene's

application: n.p is the result of the application of the n-th partial recursive function to the number
p . By n.p∈A we always mean that n.p is defined. < , > with inverses pr1, pr2 is any

(effective) and bijective coding of pairs.

(Notation: Let A be a symmetric and transitive relation on ω. Set then:

 n A m iff n is related to m by A , dom(A) = {n | n A n },

3 8

{n}A = {m | m A n } the equivalence class of n w.r.t. A , Q(A) = {{n}A | n ∈

dom(A)})

6.1 Definition: The category PER has as

objects: A∈PER iff A is a symmetric and transitive relation on ω,

morphisms : f∈PER[A,B] iff

f : Q(A) → Q(B) and ∃n ∀p (pAp ⇒ f({p}A) = {n.p}B).

Morphisms in PER are "computable" in the sense that they are fully described by partial recursive

functions which are total on the domain of the source relation.
Note also that the intersection of any collection {Ai}i∈I of objects in PER is still in PER, by

viewing them as sets of pairs (of numbers), that is,
n (∩ i∈I Ai) m iff ∀i∈I (n Ai m) .

The model may be defined by saying how to interpret Tp , individual types and type

constructors. Then the interpretation of terms, as "functions" in their types, is given by

describing the applicative behaviour of elements of p.e.r.'s, i.e. of equivalence classes. A key

point is the mathematical meaning, given in 5 below, of the application of a term to a type (rule

(∀2E)).

6.2 Definition (the λ2-model of partial equivalence relations):

1 - [Tp] = PER,

2 - →: (PER×PER) → PER is the function such that

m (R→S) n ⇔ ∀p,q (p R q ⇒ m.p S n.q),

3 - ∀: (PER → PER) → PER is the function such that ∀(F) = ∩R∈ PER F(R),

4 - evalR,S({n}R→S,{m}R) = {n.m}S where R,S ∈ PER ,

5 - evalF({n}∀(F), R) = {n}F(R) where F: PER → PER (polymorphic application).

The definition of polymorphic application in 5 was suggested by Moggi in a discussion on

computer mail (Moggi[1986]). This model and similar ones (see Mitchell[1986],

BreazuT.&Coquand[1987]) have been also used to answer consistency questions for extensions
of λP2 (see the Conclusion), for which it is essential to allow models with also empty types (see

Meyer&al[1987]). However, the first basic ideas for a λ2-model HEO2 (with all types non

empty), based on partial equivalence relations, is due to Girard (see also Troelstra[1972]).

What needs to be done now is to relate the above interpretation of polymorphic types as

intersections (in 4) to the set theoretic intuition of polymorphic types as indexed products.

Indexed over PER itself, as it should be clear by now. Observe first that there is no way to look

at PER as an object of PER itself (for cardinality reasons!). Indeed, we never required, in the

3 9

formal theory, that Tp is a type, although in some models (e.g. in Amadio&al[1986] or

Taylor[1986]) this is so. In any case, we must be able to deal with Tp in some "uniform" way,

as we need to interpret universal quantification over types and over Tp . For this purpose we

consider the following extension of PER .

6.3 Definition: The category ω−Set has as

objects: (A, |__)∈ω−Set iff

 A is a set and |__⊆ ω×Α , i.e. |__ is a relation in ω×Α , s.t. ∀a∈A ∃n |__a .

morphisms : f∈ω−Set[A,B] iff

 f : A → B and ∃n ∀a∈A ∀p |__A a n.p |__B f(a) (notation: n |__A→ B f

).

Similarly as for PER, each morphism in ω−Set is "computed" by a partial recursive function,

which is total on { p | p |__Aa }, for each a∈A .

(Notation: we say that "p realizes a" iff p |__Aa in (A, |__) ; in |__A we may omit A if

there is no ambiguity).

The category PER is isomorphic to a full subcategory of ω-Set. In fact, for every partial

equivalence relation (per) A we can define an ω-set In(A) = (Q(A), ∈A) , where Q(A) are the

equivalence classes of A , as disjoint subsets of ω, and ∈A is the usual membership relation

restricted to ω×Q(A) . Clearly, this defines a realizability relation in the sense of 6.3 and the

embedding is full.

Since categorical constructions are defined up to isomorphisms, it is more convenient to consider

a full subcategory of ω-Set whose objects are exactly the ω-sets X for which there exists a per

A s.t. X is isomorphic to In(A). This category is defined as follows.

6.4 Definition. The category M , of the modest sets, is the subcategory of ω-Set whose

objects (X, |__) have a single valued relation " |__" ; that is, " |__" satisfies

 (SV) ∀a,b∈X n |__ a ∧ n |__ b ⇒ a = b.

Morphisms are defined as for ω-sets .

If A is a p.e.r., then In(A) is clearly a modest set, since the elements of Q(A) are disjoint (non

empty) subsets of ω . Therefore, In defines an embedding from PER into M.

Conversely, for every modest set (X, |__) we define a p.e.r. Out(X), by

nOut(X)m ⇔ ∃a∈X n,m |__ a .

In view of (SV), (In,Out) is an equivalence between the categories PER and M, which cuts
down to an isomorphism between p.e.r.'s and ω-sets of the form (Q(A), ∈Α).

4 0

With the help of M we explain the relation among certain products in ω−Set and the interpretation

of universal quantification in the model defined in 6.2 . The crucial point is to look at PER also

as an object of ω−Set by setting:

Mo = (PER,|__M)∈ω−Set where |__M = ω× M .

(If there is no ambiguity, we call PER also the set of objects of the category PER).

This idea will be developped more rigorously in §.8, where we turn PER into an internal
category M' of ω-Set, whose "object of objects" is Mo, and prove that the product below, or

the intersection of p.e.r.'s, is the object component of an internal product functor.

There is a straightforward way to define a naïve product in ω-Set.

6.5 Definition: Let (A, |__A)∈ω−Set and g: A → ω-Set . Define then the ω−set

([Πa∈Ag(a)], |__Π,g) by

1) for f∈Πa∈Ag(a) , n |__Π,g f iff ∀a∈A ∀p |__A a n.p |__g(a) f(a) ,

2) f∈ [Πa∈Ag(a)] iff f∈Πa∈Ag(a) and ∃n n |__Π,g f .

Remark. Clearly, ([Πa∈Ag(a)], |__) in 6.5 is a well defined object of ω-Set. In categorical

terms, ([Πa∈Ag(a)], |__) is an indexed product in ω-Set "indexed over" itself. However, we

may avoid, here, the general notion of indexed category and indexed product and keep the

presentation fairly elementary.

What is nice is that, as soon as the range of g is restricted to M, this product lives in M:

6.6 Theorem. Let (A, |__A)∈ω−Set and g: A → M .

Then ([Πa∈Ag(a)], |__Π,g)∈M .

Proof: Let |__Π ,g be defined as in 6.5. All what we need to show is that, under the

assumptions, |__Π,g satisfies (SV) above.

Assume that n |__Π,g f ∧ n |__Π,g h . We show that ∀a∈A f(a) = h(a) and, thus, that f = h .

By definition ∀a∈A ∀p |__Aa n.p |__g(a) f(a) ∧ n.p |__g(a) h(a) and, thus, f(a) = h(a)

since, for all a , |__g(a) satisfies (SV) (and any a in A is relaized by some number). ∆

Suppose, in first approximation, that types are interpreted by modest sets, while Tp , the formal
collection of types, is interpreted by the ω-set Mo = (PER, |__ M), then the naïve interpretation

of universally quantified types is
(6.7) [∀x:Tp.B]ξ = [Πa∈[Tp][B]ξ[a/x]] .

Hence,
[∀X:Tp.B]ξ = [ΠA∈Μ[B]ξ[A/X]] ∈ M .

4 1

In §.7, we show the relation between this notion of indexed product (over Mo) and intersection

of p.e.r.'s, used in the model defined 6.2.

7. Products and intersections.
Recall that each X∈M corresponds exactly to the partial equivalence relation Out(X). By an

abuse, we identify objects X of M and the corresponding p.e.r. Out(X), when this helps in the
presentation. Then, the product in 6.6, for (A, |__A)∈ω−Set and g: A → M , may be

equivalently written as
 n [Πa∈Ag(a)] m iff ∃f∈Πa∈Ag(a) ∀a∈A ∀p,q |__A a n.p,m.q |__g(a) f(a)

iff ∀ a ∈ A ∀ p,q |_ _ A a n. p g(a) m. q

(7 . 1) .

Observe now that the first order types are interpreted in Troelstra[1973] as follows:
 n [∀x:A.B]ξ m iff ∀ p , q (p [A] ξ q ⇒ m.p [B] ξ [{p}A /x] n.q)

(7 . 2)
(where {p}A replaces x in ξ).

That is ".... m.p is equivalent to n.q in the relation [B]ξ[{p}A /x] ". When A (or its

interpretation) is in M and g is g({p}A) = [B]ξ[{p}A /x] , then 7.1 and 7.2 are the identical.

As for the more challenging case, i.e. when A = Tp , Girard and Troelstra proposed to interpret

∀X:Tp.B as in 6.2.3, i.e. by

 n [∀ X : T p . B] ξ m iff for all C∈ P E R n [B] ξ [C / X] m

(7 .3) .

That is by
n [∀X:Tp.B]ξ m iff n (∩C∈PER[B]ξ[C/X]) m .

We are now in the position to explain how this intersection fits with the (naïve) meaning of

universal quantification as indexed product. (This also hints (naïvely) to a unified framework,

which includes the first order quantification, in view of the relation between (7.1) and (7.2)).

Surprisingly enough, the intersection over M in 7.3 is indeed a product. This may be shown

when working in ω-Set, as "frame" category. More precisely, theorem 7.4 below shows that the

intersection and the product in 6.5, for Mo = (PER, |__M)∈ω−Set and g: Mo → M, are

isomorphic in M. Thus, the intersection interpretation of second order types fits with their

interpretation as products. Moreover, by 6.6 and 7.4, the meaning of functional types (more

generally, of first order quantification) and second order quantification turns out to be given by

the same kind of product. §.8 will complete the required category-theoretic explanation of the

notion of product we are talking about.

7.4 Theorem. Let (A, |__A)∈ω−Set be such that |__A = ω×Α and let g:A → M. Then

4 2

[Πa∈A(g(a))] ≅ In(∩a∈Ag(a)) , in M,

where g(a) is identified with Out(g(a))∈PER.

Proof: Let S = ∩a∈Ag(a)∈PER. We already know that both [Πa∈Ag(a)] and In(S) are in

M.
Thus we need to define a bijection G: In(S) → [Πa∈Ag(a)] and prove that it is realized with

its inverse.
Let G({n}S) = λa∈A.{n}g(a) . Clearly, G({n}S)∈Πa∈Ag(a) and G is well defined, as {n}S
= {m}S implies, for all a∈A, n g(a) m and, hence, {n}g(a) = {m}g(a) .

Consider now any index k such that k.p.q = p , for all p,q∈ω . Then (k.n) realizes G({n}S)

, since

∀a∈A ∀q |__Αa k.n.q = n ∈{n}g(a) = G({n}S)(a) ,

and k realizes G . It is easy to observe that G is injective. Let's prove that G is surjective.
If h∈[Πa∈Ag(a)] , then, by definition, ∃m |__Π,g h , that is,

∃m ∀a∈A ∀q |__A a m.q |__g(a) h(a) or, equivalently,

 ∃m ∀a∈A ∀q∈ω h(a) = {m.q}g(a) , as |__A = ω×A .

Thus, for n = m.0 , we have ∀a∈A n g(a) n , i.e. n S n . In conclusion, ∀a∈A G({n}S)(a)

= {n}g(a) = h(a) , that is G({n}S) = h . Therefore G-1 exists and it is realized by any index p

such that p.m= m.0 , for all m∈ω . ∆

One of the crucial steps in the construction of the isomorphism G in the theorem, i.e. the

definition
G({n}S)(a) = {n}g(a) , for S = ∩a∈Ag(a),

is exactly the definition of "polymorphic" application in 6.2.5. Indeed, take (A, |__A) = Mo .

Then, when universally quantified types are interpreted as intersections, terms of these types are
interpreted as equivalence classes in the intersections. Thus G({n}S)(a) = {n}g(a) tells us how

to apply {n}S to (the interpretation of) a type a.

Next we prove that the intersection is the object component of a product functor (over Mo) for the

intended internal category. This provides a categorical justification of λP2, by using the notion

of internal category. As we do not have space to get into a complete treatment of indexed

categories, we refer to Hyland[1987] and Ehrhard[1988] for the categorical understanding of both

first and second order quantification and, in the following section, we focus only on the crucial

impredicative case, the second order products or quantification over types.

§.8 Π is the right adjoint of the diagonal functor

As already mentioned, the point of the present interpretation is its naïve "set-theoretic" flavour, an

helpful aspect in applications to the denotational semantics of programming constructs (see, for

4 3

example, Mitchell[1986], Bruce&Longo[1988]). (Intuitionistic) Set Theory could be used,

because the internal category we construct lives inside a model of IZF, the Effective Topos, which

extends Kleene's realizability interpretation of Intuitionistic Logic.

It is an easy exercise to check that both M and ω-Set are Cartesian Closed. A key fact is that M

is equivalent to an internal category of ω-Set, where an internal category is a pair of objects, one

representing the collection of objects, such as Mo, the other the morphisms, and a few

morphisms between them (see 8.4 below; for example, a category is small when it is an internal

category of Set, i.e. its collections of objects and morphisms are sets). The categorical

constructions in ω-Set that will be used in the sequel are gathered in the following remark. (The

formal treatment has been quite elementary up to this point: it will be based on some more

technicalities in this final section).

8.1 Remark. In ω-Set products are defined in the obvious way: just use a coding of pairs for

the natural numbers. 6.3 suggests how to define function spaces:
[A → B] = ({f: A → B | f∈ω-Set [A,B] }, |__A→ B) .

Observe that [A → B] is also obtained from ([Πa∈Ag(a)], |__) in 6.5, when g is costantly

equal to B .
The terminal object is simply (1, |__1) , where 1 is the singleton set and |__1 = ω×1 .

Equalizers are given by
({a∈A | f(a) = g(a)} , |__fg) where n|__fg a iff n|__ A a .

Moreover, ω-Set is just a "piece" of Hyland's Effective Topos Eff, a model for IZF:

8.2 Remark. M and ω-Set may be characterized within Eff, namely M is equivalent to the

category of "effective objects" and ω-Set is equivalent to the category of "~~-separated objects"

(Hyland[1982], Rosolini[1986]). The embedding functor from ω-Set to Eff is easily given: just

take (A,|__A) to (A,=A) where

a =A b := if a = b then {n| n |__Aa} else ∅ .

Recall now that, given a category C and an object A∈C, C/A , the slice over A, is the comma

category, whose objects are the morphisms with target A. Corollary 8.3 below proves that ω-

Set is lCCC and its embedding in Eff preserves such a structure, i.e. the full embedding of any

ω-Set/A in Eff/A preserves the CCC structure. Thus, the kind of "constructions" we consider

commute w.r.t. the embedding functor from ω-Set to Eff and, hence, we can safely use ω-Set

instead of Eff.

8.3 Corollary (to Hyland[1982]). Both M and ω-Set are Locally Cartesian Closed categories,

where finite limits and Π-types are "computed" as in Eff.

4 4

Proof. The category of effective objects is a full sub-lCCC of Eff (see Hyland[1982,§.7]), i.e.

it is a full subcategory of Eff and inherits the structure of lCCC from Eff. Since M and the

category of effective objects are equivalent (and the lCCC structure of a category is preserved by

equivalences), M inherits the lCCC structure via the equivalence. A similar argument can be

carried out for ω-Set (use Hyland[1982;§.6]). ∆

In particular the category Cat(ω-Set) of internal categories and internal functors of ω-Set is a

full sub CCC of Cat(Eff). We now explicitly give the internal version M'∈Cat(ω-Set) of M.

8.4 Definition. M' = (Mo,M1,domM,codM,idM,compM) is given by

1 - Mo = (PER, |__M) where |__M = ω× M (cf. before 6.5),

2 - M1 = ({<A,{n}A→B,B)> | A,B∈M, n (A → B) n }, |__1) where

m |__1 <A,{n}A→B,B> iff m (A → B) n (in the sense of 6.2.2).

3 - domM(<A,{n}A→B,B)>) = A

4 - codM(<A,{n}A→B,B)>) = B

5 - idM(A) = <A,{n}A→A,A)> where n = λx.x is a number for the identity function.

6 - compM(<A,{n}A→ B,B,{m}B→ C,C>) = <A,{b.m.n}A→ C,C)> where b =

λxyz.x(yz).

We have now to show that M' has Mo-indexed products, namely that there is a right adjoint

Π : [Mo → M'] → M' to the diagonal functor ∆ : M' → [Mo → M'] . Note that in set-

theoretic terms, the internal category [Mo → M'] = ([Mo → Mo], [Mo → M1], ...) is the

product of Mo copies of M', or equivalently is the category of functors from the discrete

category, whose objects of objects is Mo, to M'. As for [Mo → Mo] , observe now that ω-

Set[Mo,Mo] is the collection of all set-theoretic functions, by the definition of morphisms in ω-

Set and of |__M in Mo = (PER, |__M) . However, ω-Set[Mo,M1] is much smaller:

8.5 Lemma. If <F,τ,G>∈ω-Set[Mo,M1] then ∃n ∀A∈PER τ(A) = {n}F(A)→G(A) .

Proof. Suppose that m |__ <F,τ,G>. Since 0 |__ A for any A∈PER , then take n = m.0

and observe that n |__ <F(A),τ(Α),G(A)>. Thus τ(A) = {n}F(A)→G(A) . ∆

8.6 Remark. As a matter of fact, some function spaces in ω-Set are surprisingly small. For

example, while for all A∈ω-Set, ω-Set[A,Mo] contains all functions from A to PER, when

B is a modest set, ω-Set[Mo,B] is just the set of the constant functions from PER to B . The

reader may have recognized in this a consequence of the validity of the Uniformity Principle (UP)

in Eff. Indeed, this principle was implicitly used in 7.4 . The relevance of (UP) is stressed in

Rosolini[1986], where a generalized version of 7.4 is stated for any index object satisfying (UP).

4 5

In definition 6.5 we gave a notion of "product", [Πa∈AF(a)] , over an ω-set (A, |__A) (thus, in

particular, over Mo). This is the natural candidate for the object part in the definition of the

product functor. In view of theorem 7.4, it is clear now that one can equivalently use intersection

as product. This makes the connection with the PER model in 6.2 more apparent (and simplifies
the computation of a realizer for Π1).

8.7 Definition (The product functor Π)

1 - Πo : [Mo → Mo] → Mo, the "object" part of Π, is defined by Πo(F) = ∩a∈PERF(a)

,
2 - Π1: [Mo → M1] → M1 is defined as follows. If m |__ <F,τ,G>∈ω-Set[Mo,M1] ,

set
Π1(<F,τ,G>) = <Πo(F), {m.0}Πo(F)→Πο(G) , Πo(G)> .

8.8 Fact. Π in 8.7 is well defined. In particular, Π1 is realized by any number p such that ,

for all m , p.m = m.0 .
Proof. By definition, if F : Mo → Mo , then Πo(F) is in Mo. Πo is realized by (any index

of) any total recursive function.
Therefore we only need to show that Π1 is realized by p . Namely, that, if

1) m1,m2 |__ <F,τ,G>

2) n1 Πo(F) n2
3) A∈PER

then one has (p.m1.n1) G(A) (p.m2.n2) . Indeed,

4) p.m1 = m1.0 (F(A)→G(A)) m2.0 = p.m2 , by 1 and lemma 8.5

5) n1 F(A) n2 , by 2) and 3),

and thus (p.m1.n1) G(A) (p.m2.n2) by 4), 5) and the definition of (F(A)→G(A))∈PER .

∆

According to the categorical definition of product, given B∈Mo and G∈[Mo → M'] , we

must give a natural isomorphism ϕB,G between [Mo → M'][∆(B),G] and M'[B,Πo(G)]. (In

informal lambda notation, one may write ∆(B) = λA:Mo.B, the constant function with value B

). Since M' is an internal category of ω-Set, the isomorphism ϕB,G (and its inverse) must be

realized by a natural number, computable from a realizers for B and G . Since B and G are

realized by any number (index for a total recursive function), we only need to show that there is a
number, independent of B and G, which realizes ϕB,G .

8.9 Definition (of ϕB,G): For m |__ < λA:Mo.B,τ,G>∈ω-Set[Mo,M1] , set

4 6

ϕB,G (< λA:Mo.B,τ,G>) = <Β, {m.0}Β→Πο(G) , Πo(G)> ∈M1 .

Conversely, set

ϕ−1B,G (<Β, {m}Β→Πο(G) , Πo(G)>) =

= < λA:Mo.B, λA:Mo.{m}Β→G(A) ,G>∈ω-Set[Mo,M1].

ϕB,G and ϕ−1B,G are realized by p and k (respectively), such that p.m = m.0 and k.m.n

= m (cf. 7.4 and 8.8).

Just for curiosity, if one defines Π1 by using Πo(F) = [Πa∈PERF(a)], then Π1 is realized by

s , with s.p.q.r = p.r.(q.r) , the other basic combinator of Combinatory Logic.

The reader may find a detailed analysis of the completeness properties of the internal category

M', necessary to turn it into a model of construction, in Hyland[1987], Ehrhard[1988] and

Robinson[1989]. The definition of model for system F , by internal categories, originally due to

Moggi, is described and related to other approaches in Asperti&Longo[1990].

8.10 Remark: There is another property of the right adjoint that has to be verified in order to

guaranty that substitution is well-behaved, namely the Beck-Chevalley condition (see

Hyland[1987], Hyland&Pitts[1987]). However, this condition is automatically true when
quantification is restricted to Mo, because the only right-adjoint required for the interpretation are

those to the functors
∆A : [A → M'] → [AxMo → M']

for any object A in ω-Set . (For instance the right adjoint functor to ∆Mo applied the

interpretation of a type expression B(X,Y) , with two type variables, gives the interpretation of

∀Y:Tp.B).

Conclusion: methods and applications. Going back to the introductory discussion on

"denotation and meaning", one may argue that the syntax is largely used in the semantics: the

partial recursive functions, which define the morphisms in PER, M and ω-Set, are exactly the

lambda definable functions! However, one may use the good old λo as a computing device and

explain by this λP2 , as it is above. Moreover, one may hide computability in the background or

avoid it, as the definition of all the three categories can be relativized to any (partial) Combinatory

Algebra or model of the type-free Combinatory Logic in 3.7 (see Hyland [1982],
Longo&Moggi[1989]). Thus, one may take a model of λo constructed by topological tools, as

done in Scott[1972,1976], and understand λP2 in terms of continuous functions.

The case discussed in this paper is an example of an interesting interaction between structural

meaning and formal systems. Mathematical structures suggested formal calculi of (typed)

functions or the proof theory related to the various lambda calculi. For example, Girard's

system F was invented for the proof theoretic investigation of second order Arithmetic, which is

4 7

commonly understood as the formalization of Analysis. System F , in turn, suggested the above

mentioned strong property of the partial equivalence relation on a (sufficiently rich) applicative

structures, i.e. their closure under (suitable) products indexed over the set of p.e.r.'s itself, as

well as its general category theoretic understanding (in the sense of §.8 and Carboni&al[1987],

Hyland[1987], Hyland&al[1987], Pitts[1987], Hyland&Pitts[1987]).

It is worth mentioning that this most recent history was developed by work in Computer

Science. Even though they originated in Logic, types as quotient sets or the various categories of

"modest sets" were strongly advocated by Dana Scott in various papers and lectures; without his

work and stimulating activity, not much would be known about these structures. Moreover, the

present model construction originated as an answer to a very reasonable question in Theory of
Programming, raised by Albert Meyer: can we extend λP2 (which is the core of functional

languages with explicit polymorphism) by a couple of axioms imposing that there are only two

booleans? It is good in programming to know that there will be no rubbish in the type of

booleans, i.e. in ∀X:Tp.X→(X→X) . Moggi, by using PER in Moggi[1986], showed that

such an extension is consistent. As an exercise, the reader may check that the interpretation in M
of the type ∀X:Tp.X→X of the II order identity λX:Tp.λx:X.x contains only the identity

function (or the collection of its indices).

Further "consistency questions" for interesting extensions of polymorphic languages, such as

those related to the issues on "inheritance" and subtypes, may be the most likely applications of

the present interpretation of higher order types (see Bruce&Longo[1988]). This is because types

are just (and modestly) sets of numbers and behave very naturally as far as set inclusion and

related properties are concerned.

Aknowledgement. Longo is endebted to Roberto Amadio, P.L. Curien, Roger Hindley for

numerous discussions. In particular, with P.L. Curien he had a chance to have long and helpful

discussions on the categorical approach to higher order typing and on Moggi's understanding of

"polymorphic application". Pino Rosolini made comments and suggested changes in several

messages on computer mail.

4 8

REFERENCES
(an extended and "organized" bibliography may be found in Longo[1987 and 1988])

Amadio R., Bruce K. B., Longo G. [1986] "The finitary projections model and the solution of
higher order domain equations" IEEE Conference on Logic in Computer Science
(LICS '86), Boston, June 1986.

Amadio R., Longo G. [1986] "Type-free compiling of parametric Types" IFIP Conference on
Formal description of Programming Concepts Ebberup (DK), (Wirsing ed.) North
Holland, 1987.

Asperti A., Longo G. [1990] Categories, Types and Structures: an introduction to
Category Theory for the working computer scientist, M.I.T. Press, to appear.

Bainbridge E., Freyd P., Scedrov A., P.J. Scott [1987] "Functorial Polymorphism" U. Texas
Institute on Logical foundations of Functional Programming, Austin.

Barendregt H., Coppo M., Dezani M. [1983] "A filter lambda model and the completeness of
type assignment," J. Symb. Logic 48, (931-940).

Böhm C., Berarducci A. [1985] "Automatic synthesis of typed lambda-programs on term
algebras" Theor. Comp. Sci. 39, pp. 135-154.

Breazu-Tannen V., Coquand T.[1987] "Extensional models for polymorphism" TAPSOFT-
CFLP, Pisa.

Bruce K., Longo G. [1988] "Modest models for inheritance and explicit polymorphism"
Proceedings of L. I. C. S. '88, Edinburgh (revised version : Info&Comp. vol. 87, July
1990).

Bruce K., Meyer A., Mitchell J. [1986] "The semantics of second order polymorphic lambda-
calculus," to appear (Preliminary version : Symposium on Semantics of Data Types
(Kahn, MacQueen, Plotkin eds.), LNCS 173, Springer-Verlag (pp. 131-144).

de Bruijn N. [1980] "A survey of the project AUTHOMATH" in To H.B. Curry: essays in
Combinatory Logic, lambda calculus and formalism (Hindley, Seldin eds.),
Academic Press.

Burstall R.M., Lampson B. [1984] "A kernel language for abstract data types and modules",
Symposium on Semantics of Data Types (Kahn, MacQueen, Plotkin eds.), LNCS
173, Springer-Verlag (1-50).

Carboni A., Freyd P., Scedrov A. [1987] "A categorical approach to realizability of polymorphic
types" 3th A.C.M. Symp. Math. Found. Progr. Lang. Semantics, LNCS, Spriger-
Verlag.

Cardelli L. [1986] "A polymorphic lambda-calculus with Type:Type", Preprint, Syst. Res.
Center, Dig. Equip. Corp.

Cardelli L., Longo G. [1989] "A semantic basis for Quest" Dec-src report 5, Feb. 1990.

Constable R. L. et al. [1986] Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall.

Coppo, M. [1984] "Completeness of type assignment in continuous lambda-models," Theor.
Comp. Sci. 29 (309-324).

4 9

Coquand T. [1985] "Une théorie des constructions", Thèse de 3ème cycle, Université Paris VII.

Coquand T. [1986] "An analysis of Girard paradox", IEEE Conference on Logic in
Computer Science, Boston, June 1986.

Coquand T., Huet G. [1985] "Constructions: a higher order proof system for mechanizing
mathematics" Report 401 INRIA, presented at EUROCAL 85.

Ehrhard T. [1988] "A Categorical Semantics of Constructions" Proceedings of L.I.C.S. '88,
Edinburgh.

Feferman[1985] "A theory of variable types" Rev. Colombiana Matem., XIX, pp. 95 - 105.

Girard J.Y. [1971] " Une extension de l'interpretation de Gödel a l'analyse, et son application a
l'elimination des coupures dans l'analyse et la theorie des types". In 2nd Scandinavian
Logic Simposium, J.E. Festand, ed. North-Holland, Amsterdam, 1971, pp. 63-92.

Girard, J. [1972] "Interpretation fonctionelle et elimination des coupure dans l'arithmetic d'ordre
superieur," These de Doctorat d'Etat, Paris.

Harper R., Honsell F., Plotkin G. [1987] "A framework for defining Logics" L. I. C. S. '87,
Cornell, June 1987.

Hindley, R. [1969] "The principal type-scheme of an object in Combinatory Logic," Trans.
A.M.S., 146 (22-60).

Hindley, R. [1983] "The completeness theorem for typing lambda-terms," Theor. Comp. Sci.
22 1-17 (also TCS 22, pp. 127-133).

Hindley R., Seldin J. [1986] Introduction to Combinators and Lambda-Calculus,
London Mathematical Society.

Huet G. [1986] "Formal Structures for Computation and Deduction" Lecture Notes, C.M.U..

Hyland M. [1982] "The effective Topos," in The Brouwer Symposium, (Troelstra, Van
Dalen eds.) North-Holland.

Hyland M. [1987] "A small complete category" Lecture delivered at the Conference Church's
Thesis after 50 years, Zeiss (NL), June 1986 in Ann. Pure Appl. Logic, 40 (1988).

Hyland M., Pitts A. [1987] "The Theory of Constructions: categorical semantics and topos
theoretic models" Categories in C.S. and Logic, Boulder (AMS notes).

Hyland M., Robinson E., Rosolini P. [1987] "The discrete objects in the effective topos" Math.
Dept., Cambridge Univ..

Johnstone P. [1977] Topos Theory. Academic Press.

Knoblock T.B., Constable R.L. [1986] "Formalized metareasoning in Type Theory" IEEE
Conference on Logic in Computer Science, Ithaca, June 1987, pages 237-248.

Kreisel G. [1959] "Interpretation of analysis by means of constructive functionals of finite type",
In Constructivity in Mathematics, ed. A. Heyting. N-H, (pp.101-128).

5 0

Lambeck J., Scott P.J. [1980] "Intuitionistic type theory and the free topos," J. Pure Appl.
Algebra 19 (215-257).

Longo G. [1986] "On Church's formal theory of functions and functionals" Lecture delivered at
the Conference Church's Thesis after 50 years, Zeiss (NL), June 1986, in Ann. Pure
Appl. Logic, 40 (1988) 93-133.

Longo G. [1988] From type-structures to Type Theories Lecture Notes, Spring semester
1987/8, C.S. Dept., C.M.U..

Longo G., Martini S. [1986] "Computability in higher types, Pω and the completeness of type
assignement," Theor. Comp. Sci. 46, 2-3 (197-218).

Longo G., Moggi E. [1989] "A category-theoretic characterization of functional completeness,"
TCS, to appear(prelim. version in Math. Found. Comp. Sci., Prague 1984 (Chytil,
Koubek eds.) LNCS 176 , Springer-Verlag, 1984 (pp. 397-406)).

Martin-Löf P. [1971] "A theory of types," Report 71-3, Dept of Mathematics, University of
Stockholm, February 1971, revised October 1971.

Martin-Löf P. [1972] "An intuitionistic theory of types" Report, Dept of Mathematics,
University of Stockholm, 1972.

Martin-Löf P. [1975] "An intuitionistic theory of types" Logic Colloqium 73, Rose
Shepherdson (Eds.), North-Holland (73-118).

Martin-Löf P. [1982] "Constructive logic and computer programming," In Logic ,
Methodology and Philosophy of Science VI, ed. L.J. Cohen et al. (eds.) North-
Holland (pp. 153-175).

Martin-Löf P. [1984] Intuitionistic Type Theory Bibliopolis, Napoli.

Meseguer J. [1898] "Relating models of polymorphism" POPL '89.

Meyer A., Mitchell J., Moggi E., Statman R.[1987] "Empty types in polymorphic lambda
calculus" POPL '87.

Milner R. [1978] "A theory of type polymorphism in programming," Journal of Computer
and Systems Sci., 3 (348-375).

Mitchell J. [1986] "A type-inference approach to reduction properties and semantics of
polymorphic expressions" ACM Conference on LISP and Functional Programming,
Boston.

Mitchell J. [1988] "Polymorphic Type Inference and containement" Info&Comp., 76, 2/3, 211-
249.

Moggi E. [1986] Message on "Types" elettronic mailing list.

Moggi E.[1988] "The partial lambda-calculus" Ph. D. Thesis, Edinburgh.

Nederpelt R.P. [1980] "An approach to theorem proving on the basis of a typed lambda
calculus," LNCS 87, (pp.182-194).

5 1

Nordstrom B. [1986] "Programming in constructive set theory: some examples". In
Proceedings 1981 Conference on Functional Programming Languages and
Computer Architecture. Portsmouth, England, pages 141-153.

Nordstrom B. [1961] "Martin-Löf Type Theory as programming Logic" Progr. Meth. Group,
Rep. 27, Göteborgh.

Petersson K. [1982] "A programming system for type theory" Chalmers University, Göteborg.

Pitts A. [1987] "Polymorphism is Set Theoretic, constructively" Symposium on Category
Theory and Comp. Sci., SLNCS 283 (Pitt et al. eds), Edinburgh.

Plotkin G. [1977] "LCF as a programming language," TCS 5 (pp.223-57).

Reynolds J. [1984], "Polymorphism is not set-theoretic," Symposium on Semantics of
Data Types, (Kahn, MacQueen, Plotkin, eds.) LNCS 173, Springer-Verlag

Reynolds J.C. [1985] "Three approaches to type structures," LNCS 185, (pp. 145-146).

Reynolds J.C., Plotkin G. [1988] "On functors expressible in the polymorphic typed lambda
calculus" preliminary report, C.M.U..

Robinson E. [1989] "How complete is PER?" LICS '89.

Rosolini G. [1986] "About Modest Sets" Notes for a talk delivered in Pisa.

Seely R.A.G. [1986] "Categorical semantics for higher order polymorphic lambda calculus",
JSL, n.4, vol 52, pp. 969-989.

Scott D. [1970] "Constructive validity" in Symposium on Automatic Demonstration,
Lecture Notes in Mathematics, Vol. 125. Springer-Verlag, New York, 1970, pp. 237-
275.

Scott D. [1972] "Continuous lattices" Toposes, algebraic Geometry and Logic,
(Lavwere ed.), SLNM 274, (pp.97-136) Springer-Verlag.

Scott D. [1976] "Data types as lattices," SIAM Journal of Computing, 5 (pp. 522-587).

Scott D. [1980a] "Lambda-calculus, some models, some philosophy," The Kleene
Symposium (Barwise et al. eds.) North-Holland.

Taylor P. [1986] "Recursive Domains, Indexed Category Theory and Polymorphism" Ph. D.
Thesis, Imperial College, London.

Troesltra A.S. [1973] "Notes in intuitionistic second order arithmetic," Cambridge Summer
School in Math Logic, Springer LNM 337 (pp. 171-203).

