E. R. Kay, D. A. Leigh, and F. Zerbetto, Synthetic molecular motors and mechanical machines, Angew. Chem. Int. Ed, vol.46, pp.72-191, 2007.

V. Balzani, M. Venturi, and A. Credi, Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld, 2008.

S. Erbas-cakmak, D. A. Leigh, C. T. Mcternan, and A. L. Nussbaumer, Artificial molecular machines, Chem. Rev, vol.115, pp.10081-10206, 2015.

W. R. Browne and B. L. Feringa, Molecular Switches, 2011.

R. Eelkema, Molecular machines: Nanomotor rotates microscale objects, Nature, vol.440, pp.163-163, 2006.

G. Vives and J. M. Tour, Synthesis of single-molecule nanocars, Acc. Chem. Res, vol.42, pp.473-487, 2009.

U. G. Perera, Controlled clockwise and anticlockwise rotational switching of amolecular motor, Nat. Nanotechnol, vol.8, pp.46-51, 2013.

T. Kudernac, Electrically driven directional motion of a four-wheeled molecule on a metal surface, Nature, vol.479, pp.208-211, 2011.

B. Lewandowski, Sequence-specific peptide synthesis by an artificial small-molecule machine, Science, vol.339, pp.189-193, 2013.

N. Zigon, A. Guenet, E. Graf, and M. W. Hosseini, A platinum based organometallic turnstile, Chem. Commun, vol.49, pp.3637-3639, 2013.

U. Lüning, Switchable catalysis, Angew. Chem. Int. Ed, vol.51, pp.8163-8165, 2012.

M. J. Wiester, P. A. Ulmann, and C. A. Mirkin, Enzyme mimics based upon supramolecular coordination chemistry, Angew. Chem. Int. Ed, vol.50, pp.114-137, 2011.

B. M. Neilson and C. W. Bielawski, Illuminating photoswitchable catalysis, ACS. Catalysis, vol.3, pp.1874-1885, 2013.

V. Blanco, D. A. Leigh, and V. Marcos, Artificial switchable catalysts, Chem. Soc. Rev, vol.44, pp.5341-5370, 2015.

L. Van-dijk, Molecular machines for catalysis, Nat. Rev. Chem, vol.2, p.117, 2018.

M. V. Peters, R. S. Stoll, A. Kühn, and S. Hecht, Photoswitching of basicity, Angew. Chem. Int. Ed, vol.47, pp.5968-5972, 2008.

O. B. Berryman, A. C. Sather, A. Lledó, and J. Rebek, Switchable catalysis with a light-responsive cavitand, Angew. Chem. Int. Ed, vol.50, pp.9400-9403, 2011.

O. B. Berryman, A. C. Sather, A. Lledó, and J. Rebek, Switchable catalysis with a light-responsive cavitand, Angew. Chem. Int. Ed, vol.50, pp.9400-9403, 2011.

R. Cacciapaglia, S. Di-stefano, and L. Mandolini, The bis-barium complex of a butterfly crown ether as a phototunable supramolecular catalyst, J. Am. Chem. Soc, vol.125, pp.2224-2227, 2003.

B. M. Neilson and C. W. Bielawski, Photoswitchable organocatalysis: using light to modulate the catalytic activities of N-heterocyclic carbenes, J. Am. Chem. Soc, vol.134, pp.12693-12699, 2012.

J. Wang and B. L. Feringa, Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor, Science, vol.331, pp.1429-1432, 2011.

M. Vlatkovic, L. Bernardi, E. Otten, and B. L. Feringa, Dual stereocontrol over the Henry reaction using a light-and heat-triggered organocatalyst, Chem. Commun, vol.50, pp.7773-7775, 2014.

V. Blanco, A. Carlone, K. D. Hänni, D. A. Leigh, and B. Lewandowski, A rotaxane-based switchable organocatalyst, Angew. Chem. Int. Ed, vol.51, pp.5166-5169, 2012.

V. Blanco, D. A. Leigh, V. Marcos, J. A. Morales-serna, and A. L. Nussbaumer, A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine, J. Am. Chem. Soc, vol.136, pp.4905-4908, 2014.

J. Beswick, Selecting reactions and reactants using a switchable rotaxane organocatalyst with two different active sites, Chem. Sci, vol.6, pp.140-143, 2015.

M. Galli, J. E. Lewis, and S. M. Goldup, A stimuli-responsive rotaxane-gold catalyst: regulation of activity and diastereoselectivity, Angew. Chem. Int. Ed, vol.54, pp.13545-13549, 2015.

, Zn(1)Cl 2 ] with 2-pyridinemethanol and acetic anhydride. b anti-closed tweezers [Zn(1)Cl 2 ] with 2-pyridinemethanol and acetylimidazole. c bridging 3-pyridinemethanol substrate in the cavity of anticlosed tweezers [Zn(1)Cl 2 ]. d bridging 4-pyridinemethanol substrate in the cavity of anti-closed tweezers, DFT optimized geometries. a tetrahedral intermediate doubly bound inside the cavity of anti-closed tweezers

M. Centola, J. Valero, and M. Famulok, Allosteric control of oxidative catalysis by a DNA rotaxane nanostructure, J. Am. Chem. Soc, vol.139, pp.16044-16047, 2017.

V. Marcos, Allosteric initiation and regulation of catalysis with a molecular knot, Science, vol.352, pp.1555-1559, 2016.

A. Petitjean, N. Kyritsakas, and J. M. Lehn, Ion-triggered multistate molecular switching device based on regioselective coordination-controlled ion binding, Chem. Eur. J, vol.11, pp.6818-6828, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019522

A. J. Mcconnell, C. S. Wood, P. P. Neelakandan, and J. R. Nitschke, Stimuliresponsive metal-ligand assemblies, Chem. Rev, vol.115, pp.7729-7793, 2015.

C. W. Machan, One-pot synthesis of an Fe(II) bis-terpyridine complex with allosterically regulated electronic properties, J. Am. Chem. Soc, vol.134, pp.16921-16924, 2012.

A. M. Lifschitz, An allosteric photoredox catalyst inspired by photosynthetic machinery, Nat. Commun, vol.6, p.6541, 2015.

A. M. Lifschitz, M. S. Rosen, C. M. Mcguirk, and C. A. Mirkin, Allosteric supramolecular coordination constructs, J. Am. Chem. Soc, vol.137, pp.7252-7261, 2015.

A. Fermi, G. Bergamini, M. Roy, M. Gingras, and P. Ceroni, Turn-on Phosphorescence by metal coordination to a multivalent terpyridine ligand: a new paradigm for luminescent sensors, J. Am. Chem. Soc, vol.136, pp.6395-6400, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01021101

K. M. Park, J. Murray, and K. Kim, Ultrastable artificial binding pairs as a supramolecular latching system: a next generation chemical tool for proteomics, Acc. Chem. Res, vol.50, pp.644-646, 2017.

M. Schmittel, S. De, and S. Pramanik, Reversible ON/OFF nanoswitch for organocatalysis: mimicking the locking and unlocking operation of CaMKII, Angew. Chem. Int. Ed, vol.51, pp.3832-3836, 2012.

S. De, S. Pramanik, and M. Schmittel, A toggle nanoswitch alternately controlling two catalytic reactions, Angew. Chem. Int. Ed, vol.53, pp.14255-14259, 2014.

G. H. Ouyang, Y. M. He, Y. Li, J. F. Xiang, and Q. H. Fan, Cation-triggered switchable asymmetric catalysis with chiral Aza-CrownPhos, Angew. Chem. Int. Ed, vol.54, pp.4334-4337, 2015.

A. Vidal-ferran, I. Mon, A. Bauzá, A. Frontera, and L. Rovira, Supramolecularly regulated ligands for asymmetric hydroformylations and hydrogenations, Chem. Eur. J, vol.21, pp.11417-11426, 2015.

M. Vaquero, L. Rovira, and A. Vidal-ferran, Supramolecularly fine-regulated enantioselective catalysts, Chem. Commun, vol.52, pp.11038-11051, 2016.

N. Mittal, S. Pramanik, I. Paul, S. De, and M. Schmittel, Networking nanoswitches for ON/OFF control of catalysis, J. Am. Chem. Soc, vol.139, pp.4270-4273, 2017.

G. Ouyang, Y. He, and Q. Fan, Podand-based dimeric chromium (III)-salen complex for asymmetric henry reaction: cooperative catalysis promoted by complexation of alkali metal ions, Chem. Eur. J, vol.20, pp.16454-16457, 2014.

C. G. Oliveri, P. A. Ulmann, M. J. Wiester, and C. A. Mirkin, Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction, Acc. Chem. Res, vol.41, pp.1618-1629, 2008.

N. C. Gianneschi, A supramolecular approach to an allosteric catalyst, J. Am. Chem. Soc, vol.125, pp.10508-10509, 2003.

N. C. Gianneschi, S. Cho, S. T. Nguyen, and C. A. Mirkin, Reversibly addressing an allosteric catalyst in situ: catalytic molecular tweezers, Angew. Chem. Int. Ed, vol.43, pp.5503-5507, 2004.

N. C. Gianneschi, S. T. Nguyen, and C. A. Mirkin, Signal amplification and detection via a supramolecular allosteric catalyst, J. Am. Chem. Soc, vol.127, pp.1644-1645, 2005.

H. J. Yoon, J. Kuwabara, J. Kim, and C. A. Mirkin, Allosteric supramolecular triple-layer catalysts, Science, vol.330, pp.66-69, 2010.

M. Raynal, P. Ballester, A. Vidal-ferran, and P. W. Van-leeuwen, Supramolecular catalysis. Part 2: artificial enzyme mimics, Chem. Soc. Rev, vol.43, pp.1734-1787, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01637213

J. Leblond and A. Petitjean, Molecular tweezers: concepts and applications, ChemPhysChem, vol.12, pp.1043-1051, 2011.

M. Hardouin-lerouge, P. Hudhomme, and M. Salle, Molecular clips and tweezers hosting neutral guests, Chem. Soc. Rev, vol.40, pp.30-43, 2011.

F. Klärner and B. Kahlert, Molecular tweezers and clips as synthetic receptors. molecular recognition and dynamics in receptor?substrate complexes, Acc. Chem. Res, vol.36, pp.919-932, 2003.

S. Zimmerman, Rigid molecular tweezers as hosts for the complexation of neutral guests, Top. Curr. Chem, vol.165, pp.71-102, 1993.

B. Doistau, Switchable platinum-based tweezers with Pt-Pt bonding and selective luminescence quenching, Dalton Trans, vol.44, pp.8543-8551, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01707974

B. Doistau, Terpy(Pt-salphen)2 switchable luminescent molecular tweezers, Chem. Eur. J, vol.20, pp.15799-15807, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103182

L. Benda, B. Doistau, B. Hasenknopf, and G. Vives, Synthesis and guest recognition of switchable Pt-salphen based molecular tweezers, Molecules, vol.23, p.990, 2018.

B. Doistau, Mechanical switching of magnetic interaction by tweezerstype complex, Chem. Commun, vol.51, pp.12916-12919, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01190834

B. Doistau, L. Benda, B. Hasenknopf, V. Marvaud, and G. Vives, Switching magnetic properties by a mechanical motion, Magnetochemistry, vol.4, p.5, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02397874

B. Doistau, Six states switching of redox-active molecular tweezers by three orthogonal stimuli, J. Am. Chem. Soc, vol.139, pp.9213-9220, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01543708

L. G. Mackay, R. S. Wylie, and J. K. Sanders, Catalytic acyl transfer by a cyclic porphyrin trimer: efficient turnover without product inhibition, J. Am. Chem. Soc, vol.116, pp.3141-3142, 1994.

M. S. Masar, Allosterically regulated supramolecular catalysis of acyl transfer reactions for signal amplification and detection of small molecules, J. Am. Chem. Soc, vol.129, pp.10149-10158, 2007.

C. G. Oliveri, Supramolecular allosteric cofacial porphyrin complexes, J. Am. Chem. Soc, vol.128, pp.16286-16296, 2006.

A. W. Kleij, D. M. Tooke, A. L. Spek, and J. N. Reek, A convenient synthetic route for the preparation of nonsymmetric metallo-salphen complexes, Eur. J. Inorg. Chem, pp.4626-4634, 2005.

A. W. Kleij, Nonsymmetrical salen ligands and their complexes: synthesis and applications, Eur. J. Inorg. Chem, pp.193-205, 2009.

M. Muñoz-hernández, T. S. Keizer, S. Parkin, B. Patrick, and D. A. Atwood, Group 13 cation formation with a potentially tridentate ligand, Organometallics, vol.19, pp.4416-4421, 2000.

F. Song, R,R)-salen/salan-based polymer fluorescence sensors for Zn2+ detection, Polymer, vol.52, pp.6029-6036, 2011.

H. Sellner, J. K. Karjalainen, and D. Seebach, Preparation of dendritic and nondendritic styryl-substituted salens for cross-linking suspension copolymerization with styrene and multiple use of the corresponding Mn and Cr complexes in enantioselective epoxidations and hetero-Diels-Alder reactions, Chem. Eur. J, vol.7, pp.2873-2887, 2001.

M. Holbach and M. Weck, Modular approach for the development of supported, monofunctionalized, salen catalysts, J. Org. Chem, vol.71, pp.1825-1836, 2006.

A. L. Singer and D. A. Atwood, Five-coordinate Salen(tBu) complexes of zinc, Inorg. Chim. Acta, vol.277, pp.157-162, 1998.

E. C. Escudero-adán, J. Benet-buchholz, and A. W. Kleij, Trapping of a fourcoordinate zinc salphen complex inside a crystal matrix, Chem. Eur. J, vol.15, pp.4233-4237, 2009.

A. Decortes, M. Martinez-belmonte, J. Benet-buchholz, and A. W. Kleij, Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst, Chem. Commun, vol.46, pp.4580-4582, 2010.

G. Consiglio, S. Failla, P. Finocchiaro, I. P. Oliveri, and S. Di-bella, An unprecedented structural interconversion in solution of aggregate Zinc(II) salen Schiff-base complexes, Inorg. Chem, vol.51, pp.8409-8418, 2012.

G. Forte, I. P. Oliveri, G. Consiglio, S. Failla, and S. Di-bella, On the Lewis acidic character of bis(salicylaldiminato)zinc(ii) Schiff-base complexes: a computational and experimental investigation on a series of compounds varying the bridging diimine, Dalton Trans, vol.46, pp.4571-4581, 2017.

A. W. Kleij, Supramolecular zinc(II)salphen motifs: Reversible dimerization and templated dimeric structures, Inorg. Chim. Acta, vol.359, pp.1807-1814, 2006.

F. H. Zelder and J. Rebek, Cavitand templated catalysis of acetylcholine, Chem. Commun, pp.753-754, 2006.

P. Deria, Framework-topology-dependent catalytic activity of zirconiumbased (porphinato)zinc(II) MOFs, J. Am. Chem. Soc, vol.138, pp.14449-14457, 2016.

R. Neufeld and D. Stalke, Accurate molecular weight determination of small molecules via DOSY-NMR by using external calibration curves with normalized diffusion coefficients, Chem. Sci, vol.6, pp.3354-3364, 2015.

J. Burés, A simple graphical method to determine the order in catalyst, Angew. Chem. Int. Ed, vol.55, pp.2028-2031, 2016.

C. D. Nielsen and J. Burés, Visual kinetic analysis, Chem. Sci, vol.10, pp.348-353, 2019.