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Abstract

Background: Cell culture on printed micropatterns slides combined with automated fluorescent microscopy allows
for extraction of tens of thousands of videos of small isolated growing cell clusters. The analysis of such large dataset
in space and time is of great interest to the community in order to identify factors involved in cell growth, cell division
or tissue formation by testing multiples conditions. However, cells growing on a micropattern tend to be tightly
packed and to overlap with each other. Consequently, image analysis of those large dynamic datasets with no
possible human intervention has proven impossible using state of the art automated cell detection methods.

Results: Here, we propose a fully automated image analysis approach to estimate the number, the location and the
shape of each cell nucleus, in clusters at high throughput. The method is based on a robust fit of Gaussian mixture
models with two and three components on each frame followed by an analysis over time of the fitting residual and
two other relevant features. We use it to identify with high precision the very first frame containing three cells. This
allows in our case to measure a cell division angle on each video and to construct division angle distributions for each
tested condition. We demonstrate the accuracy of our method by validating it against manual annotation on about
4000 videos of cell clusters.

Conclusions: The proposed approach enables the high throughput analysis of video sequences of isolated cell
clusters obtained using micropatterns. It relies only on two parameters that can be set robustly as they reduce to the
average cell size and intensity.
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Background
Mitosis, the eukaryotes division, is a complex cellular pro-
cess involving multiple proteins. In multicellular organ-
isms, the precise orientation of cell divisions relative to
their environment plays a crucial role in the development,
growth, and homeostasis of many tissues [1]. For example,
divisions within the plane of epithelial structures con-
tribute to the expansion of the tissue surface and to the
maintenance of the epithelial monolayer organization [2],
while divisions perpendicular to the epithelial plane con-
tribute to tissue stratification, binary fate decisions and
regulation of stem cell pools [3, 4]. Defective control of
spindle orientation may be a step in the transformation
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process leading to cancer [5, 6]. In vertebrate cells, multi-
ple molecular pathways contribute to spindle orientation
in response to a variety of stimuli that include intrinsic cell
polarity, adhesion to the extracellular matrix, and contacts
with their neighbors [1]. Remarkably, these mechanisms
are shared by cells grown in a culture dish, and in vitro
studies in adherent cells have contributed a lot to our
current understanding of spindle orientation.
The aim of the biological study, for which the follow-

ing development was set, is to identify new regulators
involved in the orientation of cell division through a
mid-throughput RNAi screen in vitro. To this end, we
have developed a specific model of oriented cell division
between pairs of cells grown on adhesive micropatterned
disks. The precise molecular design of this spindle ori-
entation assay is beyond the scope of the current study
and will be described elsewhere, in combination with the
results of the RNAi screen (di Pietro et al. in preparation).
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Here, we present the image analysis approach that we
designed with the aim to automatically 1) identify events
of cell divisions and 2) measure their orientation relative
to their neighbors. Cell culture on micro-patterned sur-
faces is increasingly used in cell and developmental biol-
ogy studies using single [7–9], pairs [10], or larger groups
of cells [11, 12], owing to the possibility that micropat-
terning offers to control numerous parameters of the cells
environment and therefore reduce intercellular variability.
Hence the proposed method for the first step can be gen-
erally useful to the parallel study of any event of interest
arising in a growing cluster of cells.
Human cells (HeLa cells) genetically modified to express

the H2B-mCherry chromosomal fluorescent reporter
were seeded onto thousands of 30 μm diameter micropat-
terned disks coated with fibronectin [13] and imaged
over 60 h every 7 min using fluorescence time-lapse
microscopy. The honeycomb regular spacing of the adhe-
sive fibronectin patterns, microprinted on a cytorepellent
surface, enabled to obtain hundreds of isolated growing
clusters of cells per condition (see Fig. 1).
The development of scripts to detect all pattern posi-

tions and extract all single cluster video sequences is
fairly straightforward. The purpose of this paper is not to
describe this process but rather how we resolved unex-
pected difficulties inherent to the large variety of cell
cluster sequences we had to deal with in the next step
of the process. We seek to detect, for each of those
sequences, the precise time point when a cluster switches
from two to three cells in order to measure the division

angle of the occurring division versus the axis formed by
the previously existing two cells (see Fig. 2). Hence, only
patterns with one cell or two cells at the beginning of
the experiment are of interest; however the cell seeding
process results in patterns without any cell (which can
easily be discarded from the analysis), and patterns with
more (3 or more) cells than required, which are therefore
densely packed on the pattern. Despite the fact that this
description sounds rather simple, in practice, we faced a
variety of challenges (see Fig. 3) that made this opera-
tion intractable with the most advanced and popular cell
detection methods currently available.
For low throughput microscopy image analysis, a variety

of semi-automated methods were proposed and are cur-
rently largely used to detect cells [14]. By semi-automated
we mean an imaging throughput that is low enough
(a few images or videos) for manual intervention to help or
correct the detection. An exhaustive description of those
available semi-automatic methods is out of the scope of
this paper. However, as soon as full automation is required
because of the throughput, the number of concretely
working methods shrink to a few and require the data to
meet with some strong hypotheses. One of those hypothe-
ses is that cells must contain a single nucleus [15]. Another
important hypothesis that is often made is that nuclei can
touch each other but should not overlap [16]. Eventually,
the accurate monitoring of topological changes, that is
tracking splitting objects over time, highly relies on the
accuracy of the cell identification process at each time
frame.

Fig. 1 Large series of cell cluster acquisitions using Fibronectin micro-patterns. a shows an image displaying all micro pattern positions of a given
field of view. This image is captured once at the beginning of the sequence to locate cell patterns. b shows an acquisition of one time frame of the
H2B-mCherry signal for the same field of view. This image contains the cell clusters. c shows one of the pattern position (corresponding to the green
square on the top right of the field of view in image (a) and (d) shows the corresponding cell cluster located on it. A movie is automatically
extracted from each pattern positions containing cells. The thousands of movies extracted this way from multiple fields of view are then analyzed
using the proposed method. Scalebars are 80 μm for (a) and (b) and 20 μm for (c) and (d)
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Fig. 2 Goal. Automated identification of the first frame containing three cells in the video and computation of the division angle on this frame.
Scalebar is 20 μm

Fig. 3 Difficulties. Cell number and location in a packed cluster cannot be robustly assessed with known methods and even sometimes by human
vision. Each row shows 5 consecutive frames of a video example that illustrates the variety of difficulties this assay presented. a a frequent case
where one of the cell is out of focus, (b) another frequent case where cells are overlapping, (c) a case showing both overlapping and out of focus
cells, (d) a case where a cell enters the field of view just before mitosis, (e) another case showing overlapping cells. Scalebar is 20 μm
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Despite fruitful debates about the capabilities of lev-
elset methods to uncover the topological changes in a
group of objects to detect at low throughput [17], methods
currently used at high throughput for cells detection are
rarely based on those approaches because of their lack of
robustness in a fully automated process. Instead, the cell
detection relies most often on two steps: seed identifica-
tion followed by segmentation [18–20]. The identification
step consists in defining a seed for each object and the
segmentation step consists in applying a region growing
algorithm initialized by those seeds to uncover objects
boundaries. An example of naive approach to seed detec-
tion is the local maxima detection after smoothing, which
is heavily used at high throughput because of its sim-
plicity, its speed and its robustness for many cell based
applications. Regarding the detection step, seeded water-
shed and coupled explicit or implicit active contours can
be used [21–24]. The former methods are currently com-
mon practice and proved to be very efficient in detecting
millions of regular cells in monolayer where nuclei do not
overlap [25] while the later aremore rarely seen in practice
because of their inherent instability. However the whole
process depends primarily on the identification step. That
is, the results tend to significantly degrade when nuclei
overlap with one another and that seed cannot be cor-
rectly identified (see Fig. 3). This is precisely the problem
we ran into while using micropatterns.
In the literature, those small fibronectin patterns have

mostly been used for experiments with a single cell per
pattern (a few exceptions with two cells or more do exist
but the pattern makes the position of cells obvious and
non overlapping [7, 10]). Moreover, most of the studies
were not dynamic and focused on getting reproducible
cell shape in order to quantify cytoskeleton organization
[26]. Therefore, with a few exceptions, tracking cells on
single micropatterns has not yet been an issue using this
technology.
In our experiment, the chosen pattern is a disk and

the number of cells growing onto them is variable and
unknown. Furthermore, the pattern introduces physical
constraints that tend to pack cells together as they are
dividing, making their individual detection or even a sim-
ple counting often difficult (see Fig. 3). Indeed when more
than two cells are present on a pattern, their shape differ
from cells duplicating freely on an unbounded fibronectin
slide. Consequently, nuclei shape and distances between
nuclei are impacted. Furthermore, when clusters contain
three or more cells, they often overlap with each other,
making the detection intractable with previously cited
methods. We therefore had to propose a new way to
extract information from those packed clusters of cells.
In order to detect in each sequence the first frame show-

ing three cells, our approach consisted inmodeling the cell
cluster by Gaussian Mixture Models. Hence, a selection

process based on the sequence would allow us to deter-
mine the number of cells and their positions at each frame.
Since the event we were looking for in our study was the
second mitosis (that is when one of the two cells divides
in a cluster of two cells only), we proposed to fit two
hypothesis models to the cell cluster at each time frame:
a 2-component and a 3-component 2D Gaussian mixture
models (GMM). Fitting a GMM to count and detect bio-
logical objects in microscopy images was proposed in the
past mostly to model small fluorescent spots or on static
images. Thomann et al. [27] used a 3D Gaussian model
to approach the point spread function and detect the
number of spots reaching super-resolution. A χ2 test was
then used to choose the right number of Gaussians in the
Gaussian mixture. However, the number of degrees of
freedom of the χ2 test was defined as the number of pixels
lying on the object (a few in the case of spots) which would
be unrealistic in our case. Other methods are based on
mutual information [28] or are dedicated to mitosis detec-
tion in histopathology images [29] but they gave poor
results on our data because the cells are more densely
packed on micropatterns. However, a close approach was
proposed in [30] where numerous cells are tracked in 3D
using GMM. The difference with our approach lies in
the fact that because the throughput is much higher in
our case, images could not be acquired in 3D. Therefore,
unlike in 3D imaging, the view is incomplete and cells can
overlap with each other and appear out of focus which are
the major issues we had to deal with (see Fig. 3).

Method
The proposed approach is composed of four steps
described in this section. The first step consists in localiz-
ing the fibronectin patterns and cropping the whole video
at those locations to obtain individual cluster sequences,
the second step consists in fitting 2- and 3-components
Gaussian Mixture Model (GMM) onto each frame of each
video sequence and the third step consists in the identifi-
cation of the first frame containing three cells (the transi-
tion from 2 cells to 3 cells) using the fitting error difference
and other features computed from the GMM parameters.
The final step consists in the computation of the angle
of division in the identified frame. The whole proposed
approach is illustrated in Fig. 4 (and the code is freely
available at https://github.com/biocompibens/livespin).

Extraction of individual sequences from a video
Figure 1 shows the pattern image obtained at the begin-
ning of the sequence acquisition. Each bright area in the
pattern image is a micropattern possibly containing an
individual and isolated cell cluster. We name a cell cluster
a set of cells close to each other that mostly originate from
a single cell. Figure 1 also shows a random frame of the
video sequence of the H2B-mCherry signal corresponding
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Fig. 4 Flowchart of the proposed approach

to the same field of view. Each condition of a screen will
be made of two such acquisitions. Since each cell clus-
ter is independent from the other, we set up a system
to automatically crop a window around each micropat-
tern over time, thus producing one video sequence per
micropattern with a possible cluster on it (see Fig. 1).
In order to take into account the illumination bias (on

Fig. 1, intensity at the center of the image is brighter
than around the borders) we applied an adaptive equal-
ization of the histogram [31]. Once corrected, the pattern
image is fairly easy to segment and a smoothing fol-
lowed by a cropping around local maxima was sufficient
to obtain hundreds of cropped movies, each containing
one micropattern location as shown by Fig. 1. From this
point, those movies could be analysed independently with
the following proposed method.

Characterization of cell nuclei by Gaussian mixture model
GMMas a cell cluster model
Nuclei of cells expressing H2B-mCherry and imaged via
fluorescence microscope exhibit an ovoid structure which

can be approximated by a 2D Gaussian distribution of
grey level intensity around its center, as shown in Fig. 5.
Therefore, an image containing N cells could in princi-
ple be modelled reasonably well by a Gaussian mixture
model (GMM) with at least N components. The final goal
of the study is to measure the variation of the orientation
of the cell division when a cluster goes from two to three
cells. Thus our approach consists in comparing the rela-
tive quality of reconstruction of the observed cluster by
two GMM models with two and three components. This
would allow for resolution of both the number of cells and
also their positions provided by the model.
In theory, whatever the signal, more components in a

GMM leads to a better reconstruction. It is therefore not
possible to directly compare the fitting residuals obtained
by the two models as the 3-component model would
always show a lower error. This model selection issue was
discussed in general in the litterature and universal crite-
ria for model selection were proposed in the past as the
Akaike Information Criterium (AIC) [32] or the Bayesian
Information Criterium (BIC) [33]. Our experience using



Li et al. BMC Bioinformatics  (2016) 17:183 Page 6 of 15

Fig. 5 Gaussian Mixture Model fit on cell images. Each row shows an image of cells and the corresponding GMM fit with 2 and 3 component. The
first row shows an image with 2 cells while the second row shows an image with 3 cells. The 3-component model (1c and 2c) is always more
accurate on any given image than the 2 component model (1b and 2b) but the fitting error difference between the two models can vary
significantly. See fitting error Err on three cells of the 2-component model (2b). We take advantage of this variation over time to detect the transition
between 2 cells and 3 cells whether they appear distinct as on this example or they overlap. Scalebar is 20 μm

those criteria independently at each time frame of the
sequence led to a totally erroneous identification of the
correct cell division frame. We therefore took a different
approach as we describe further. However, prior to discus-
sion on model selection, we describe how an accurate fit
of the two GMM with two and three components could
be achieved at high throughput: that is, on each of the
400 frames of each of the thousand individual movies of
cluster we extracted.

Fitting themodel to the data
The formulation of a 2D Gaussian mixture we used for
fitting is the following:

f (x,�K ) =
K∑

k=1
wke−

1
2 (x−μk)

′S−1
k (x−μk) (1)

where K is the number of components of the mixture, wk
is a scalar value indicating the weight (or the intensity at
the peak) of the component k, μk = (μ(x),μ(y))′ is the
2D location of the component k in the plane and Sk is its
covariance matrix that reads:

Sk =
[

σ 2
1 σ12

σ12 σ 2
2

]
(2)

So each component is fully characterized by a set of 6
parameters Pk = {w,μ(x),μ(y), σ1, σ2, σ12} and the con-
catenated set of parameters �K = {P1, . . . ,PK } fully
characterizes a K components mixture. Following the two
hypotheses model with two and three components we
are interested in testing, we build GMMs with 12 or 18
parameters respectively. We use the Powell algorithm [34]
to minimize the least-square residual between a frame
image I and the K component GMM image model MK
that reads: ferr = ∑

x,y
[
I(x, y) − MK (x, y)

]2.
Parameters initialization
One of the main difficulties in minimizing such a residual
is that given the large number of parameters (12 or 18),
the convergence toward the global minimum is not sys-
tematic. In order to ease this convergence, it is therefore
crucial to set the initial parameters with values close to the
optimal solution.
For the first image of the sequence, we take advan-

tage of the fact that an average nucleus diameter d̄nuc
and intensity w̄nuc can be easily estimated from the data.
As d̄nuc can be modeled as the Full Width at Half Max-
imum [35], we first define a 2D Gaussian kernel with
σ̄nuc = d̄nuc/(2

√
2ln(2)). Local maximas are then detected

on an image smoothed by this kernel and limited by a
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foreground defined with the Otsu method [36]. Those
local maximas are then used as initial values for Gaussian
component locations. If the number of detected maxima
is lower than the number of components of themodel (e.g.
when cells overlap), then additional random locations on
the foreground are added. The intensity w̄nuc is directly
used to initialize w. The remaining parameters σ1, σ2 and
σ12 are initialized with median values of a set of previously
fitted GMM components with random initialization.
For the rest of the frames in the sequence, parame-

ters are initialized with values obtained from the fitting
at previous frames and from observations obtained from
the current frame. In two consecutive frames with no
mitotic event (that is in the large majority of the cases),
the position, the intensity and the shape of the cells are not
supposed to change much given the time interval between
video frames (in video duration of 7 min). Therefore, the
parameters μ and w could be initialized on the next frame
by the values obtained for the same parameter at the last
frame. This would read μ̂t = μt−1 and ŵt = wt−1. How-
ever, in the case where mitosis happens, the location and
the intensity of some of the cells suddenly change. To
take into account this event, local maxima of the image
are also precomputed on each image and the locations
(resp. the intensity) of each component are initialized by
a value half way between the location (resp. the intensity)
obtained at the previous frame and the location (resp. the
intensity) of the closest local maxima possibly detected on
the current frame. This reads μ̂t = (μt−1 + μD

t )/2 and
ŵt = (wt−1 + I(μD

t ))/2 where μD
t is the location of the

closest detected maxima on frame t. This simple method
ensures that the fitting process will be initialized a priori
as close as possible from the optimal solution while it is
not known if a mitotic event occurs or not.
Furthermore, we observed that while the shape of a

nucleus is not changing much between two consecutive
frames (except at a mitotic event time), on the contrary
its orientation is quite dynamic (cells are often rotating).
Therefore, we decided to uncouple the shape and the ori-
entation of each component at each time frame in order to
properly initialize the fitting process on the next frame for
each of those parameters. In the formulation we use, shape
and rotation are mixed into the covariance matrix. By
diagonalizing the covariance matrix Sk,t−1 of each com-
ponent k resulting from the previous frame we obtain λ1
and λ2 the eigenvalues corresponding respectively to the
length of the major and the minor axes of the ellipse and
the corresponding eigenvectors v1 and v2 from which the
angle of the ellipse’s major axis can be computed: θk,t−1 =
arctan(v1(y)/v1(x)).
When the nucleus rotates, solely the angle θ varies, not

the shape represented by λ1 and λ2. Therefore, we pro-
posed an initialization of the angle to be a linear extrapola-
tion of the two previous frames (constant speed rotation)

with δk,t−1 = θk,t−1 − θk,t−2 leading to the following
rotation matrix:

R̂k,t =
[
cos(δk,t−1) −sin(δk,t−1)
sin(δk,t−1) cos(δk,t−1)

]
(3)

Eventually, the covariance matrix containing the param-
eters σ̂1, σ̂2 and σ̂12 is initialized by rotating the covariance
matrix obtained at previous frame the following way:

Ŝk,t = R̂k,tSk,t−1R̂
−1
k,t (4)

Constraints to ensure convergence
As our model includes 12 parameters in the case of 2
components and 18 parameters in the case of 3 compo-
nents, even with a precise initialization the fitting process
may diverge (e.g. one component may easily collapse or
move outside the frame). We enforced the convergence by
adding penalty terms to our error function.
The first penalty term concerns the locations μk of the

Gaussian components. A reasonable hypothesis made on
those locations is that they should lie onto the intensity
foreground. Therefore, we computed a distance matrix D
which is the size of the image. Each position of D maps
to 0 inside the foreground and to the distance to the clos-
est foreground pixel outside the foreground. In order to
prevent the Gaussian components to move away from the
foreground we use this matrix in the following penalty
term that rapidly increases the error when a component
location moves away from the foreground:

floc =
K∑

k=1
D(μk)

2 (5)

The second penalty term concerns the area of the nuclei
that we know is about a given value Ānuc = π d̄2nuc/4
entirely defined by our prior estimation of d̄nuc. It ensures
that the final area of the component represented by the
determinant of the covariance matrix is not exaggeratedly
different from this given area and it reads:

fvol =
K∑

k=1
(|Sk| − Ānuc)

2 (6)

The last penalty term concerns the intensity of the
nucleus that should not collapse and that we know is about
a previously defined w̄nuc. Indeed, we observe that with-
out this term, one of the components could easily end up
modeling the background. It reads:

fint =
K∑

k=1
(wk − w̄nuc)

2 (7)

The global error, now penalized by those terms, reads:

fglobal = ferr · (
1 + floc + fvol + fint

)
(8)
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Note that each of those additional constraints prevents
the optimization process to move toward absurd values by
artificially increasing the total error outside an acceptable
range. Therefore, they drastically modify the objective
function outside an acceptable range of parameter values
while they preserve the function within this range. The
consequence is that they do not modify significantly the
minimum of the function.

Time features computed from the GMMs
At this stage, large sets of data can be fully automatically
processed by extracting all single pattern videos and auto-
matically fitting a 2-component GMMand a 3-component
GMM on each of their time frames. Two parameters
only need to be set: the approximated nuclear diame-
ter d̄nuc and intensity w̄nuc. Those values can be easily
recovered.

Fig. 6 Time features F1, F2 and F3 on an example video. The dashed vertical line indicates the event of interest we are seeking to identify when a
third cell appears. a residual f2 of the 2-component model in red, f3 of the 3-component model in green and (b) F1, their ratio. c F2, the distance
between the two closest centers of the 3-components model. d F3, the variance of the intensity values between the two closest centers of the
3-component model
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Fig. 7 Derivatives of the time features (corresponding to the example given in Fig. 6) (a) F′
1, (b) F

′
2, (c) F

′
3 and (d) their product over time. The right

panels are zooms in the peak region. A first clear peak of the feature derivatives product can be observed at the frame of interest. Scalebar is 20 μm
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In order to identify the first frame onto which three
cells can be observed (that is right at the second divi-
sion) on each of those videos, we propose to compute the
derivative over time of three features. Those features are
the fitting error ratio between both models, the minimum
distance between the three component centers and the
variance of intensity between the closest component cen-
ters. None of those require any parameter and they are
described below.

F1: fitting error ratio
We are interested in finding a specific anaphase event:
the first frame onto which three objects can clearly be
identified (see Fig. 2). In theory, a GMM with three
components (residual f3) should always fit better to
the signal than a GMM with two components (resid-
ual f2). This is illustrated on a single image by Fig. 5
and on a whole sequence by Fig. 6a where f3 is con-
stantly lower than f2. However, our rationale is that the
transition time from two to three nuclei will be the
moment when the residual ratio between both GMM
fitting suddenly becomes significantly higher. Such a pat-
tern can be observed from the derivative over time
of the residual ratio F1(t) = f3(t)/f2(t) across the
entire sequence right when this event is happening (see
Fig. 7a and b).

F2: distance between the closest components
As shown in Fig. 6c, the distance between the two closest
centers in the 3-component model F2(t) = min{‖μi(t) −
μj(t)‖2,∀(i, j) ∈ {1, 2, 3}2, i �= j} becomes much larger
when the mitotic event of interest happens. This is
because when a 3-component GMM is used to model
two cells, one of the cells ends up being modeled by
two components and therefore shows two very close cen-
ters. However, when one of the cells splits into two, the
3-component GMM correctly models the cluster, and
each component matches a single cell. Consequently, the
minimum distance between any two centers suddenly
increases.

F3: variance of intensity between the closest components
Along with the distance between the closest centers, the
intensity variation of the pixels between those two closest
centers also provides information. Indeed, if the variance
is high, it denotes that both foreground and background
pixels were considered in the calculation, while if the vari-
ance is low, it means that only foreground pixels were
used. Therefore, this feature tends to measure whether or
not the two closest components of a 3-component model
are separated by some background or not and therefore if
they model or not the same cell. The feature F3 over time
for an example cluster can be seen in Fig. 6d.

Fig. 8 Three examples (a, b and c) of identification of the mitotic events of interest over time. On the three examples, our algorithm succeed to
identify the correct number and position of the cells despite frequent overlap and differences in intensities. Scalebar is 20 μm
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Table 1 Pattern count on raw data (A and B), after a rough
preprocessing step (C, D and E) to discard empty patterns or
patterns containing obviously more than 2 cells on the first frame
of the sequence. Eventually, the number of pattern where a
transition from two to three cell was detected automatically (F)
or manually (G). While a lower number of event is selected
automatically, more than 80 % of the events selected
automatically were also part of the manual selection whatever
the experimental condition

Cyclophilin LGN p62
siRNA siRNA siRNA

A) Total number of fields of view
(=large videos)

4 5 6

B) Total number of micropatterns
(=single cluster videos)

1116 1393 1668

C) Micropatterns with no cells
(excluded)

400 607 719

D) Micropatterns with too many
cells at time 0 (excluded)

51 64 120

E) Micropatterns with a low number
of cells at time 0

665 722 829

F) Events selected automatically
from (E)

122 135 97

G) Events selected manually 184 197 227

H) Proportion of (F) also in (G) 85.9 % 82.5 % 81.8 %

Identification of the division time of interest
In order to detect sudden changes over time using the
features described above, we compute their derivatives.
Hence we search for a sudden peak in those features’
derivatives (see Fig. 7). In practice, there is a large vari-
ability of events we have to deal with when processing
hundreds of videos of that kind. Using those three fea-
tures simultaneously increases the ability of the approach
to detect the division time of interest. We show on an
example (see Fig. 7) and on a larger study (data not shown)
that using the product of those features’ derivatives over
time allows to extract this event with a better accuracy
than using only one or two of them.

Computation of the division angle
Themethod described above enables detection of the time
of the first anaphase image on a movie with two cells.
Detecting the right time is essential in order to measure
the correct angle, because cells move and rotate from one
time point to the next, especially when there are more
than two cells on a pattern. Moreover cells can die or
image acquisition can have started when three or more
cells were already on the pattern. In those last cases,
the error model would not fit. This allows us to exclude
sequences where a division angle cannot be measured.
Once the right image is selected, the parameters of the

fitting give the positions μk and sizes |Sk| of the cor-
responding underlying nuclei (see Fig. 5). From those

Table 2 The angle samples obtained from a manual selection or
an automated analysis are similar: the null hypothesis of a KS test
(“both samples come from the same angle distribution”) cannot
be rejected at a 10 % significance level

Manual (M) Automated (A) (M) vs (A)

median stdev median stdev KS-test p-value

Cyclophilin siRNA 23 30 31 31 0.229

LGN siRNA 71 26 72 25 0.620

p62 siRNA 62 28 54 30 0.246

measures, nuclei issued from the last division are cho-
sen to be the two smallest Gaussian objects. Using those,
the extraction of the angle described by the Fig. 2 is
straightforward.

Results
To our knowledge, no available software could provide a
full solution dedicated to the type of assay we propose (i.e.
an automated tracking of overlapping cells on thousands
of individual movies). Therefore, it was not possible to
strictly compare our approach to another possibly exist-
ing method. However, a freely available software program
that could have matched our need was Cellprofiler [25]
because in principle, it enables the tracking of cells over
time in a large set of image sequences, using the Hun-
garian algorithm. However, cell detection in Cellprofiler
is based on a maxima detection followed by a seeded
Watershed segmentation so we expected it not to perform
well in detecting overlapping and dividing cells. In accor-
dance, the results we obtained were dramatically poor. A
quantitative comparison here would be meaningless, as
almost nomitotic event could be identified this way. How-
ever, it was possible to compare our automated approach
to a large set of data (4000 sequences) that has been
exhaustively analyzed by a human tester, and considered
thereafter as the “ground truth” for our method.

Experimental data
The dataset we created to validate the method is made
of several videos of hundreds of cell divisions under

Table 3 The angle distributions obtained from a manual
selection and an automated analysis reach similar conclusions:
the null hypothesis of a KS test (“both samples come from the
same angle distribution”) is rejected for any two couple of
conditions at a 10 % significance level

KS-test p-value

Cyclophilin siRNA Cyclophilin siRNA LGN siRNA
vs vs vs

LGN siRNA p62 siRNA p62 siRNA

Manual 3.22e-15 9.47e-11 5.64e-02

Automated 2.09e-07 1.65e-02 2.72e-04
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three biological conditions. Those conditions are as fol-
lows: as a negative control, we used an siRNA targeting
Cyclophilin, which is proposed as one of several standard
negative controls by GE-Dharmacon in their ON-
target+ human siRNA libraries. LGN (Leucine-Glycine-
Asparagine repeat protein) was used as a positive control:
LGN is an adaptor molecule involved in the localized
recruitment of dynein motor complexes at the cell mem-
brane, which direct forces exerted on astral microtubules.

LGN is a central regulator of spindle orientation in many
animal cell types (reviewed in [1]). Our paired-cell assay
(di Pietro et al, in preparation) is designed to specifically
depend on the “LGN-complex” molecular cascade. siRNA
against LGN therefore significantly alters spindle orien-
tation in this assay. The third siRNA targets p62, which
is part of the dynactin molecular complex and as such a
candidate for the regulation of dynein activity and spindle
orientation. It is therefore expected to differ significantly

Fig. 9 Distributions of angles comparisons. First row: manual and automated analyses are plotted against each other for each condition.
Second row: manual analysis plotted for all couples of conditions. Third row: automated analysis plotted for all couples of conditions
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from the negative control, and to yield results similar (but
not necessarily identical) to the positive control. As we
aim at using this method on a large set of conditions for
which we will have a variation in the number of patterns
we will obtain per condition, each condition for our test
was respectively made of 4, 5 and 6 videos covering each
field of view. Each field of view was made of about 250
frames of size 2048×2048 pixels. Figure 1 shows a frame of
such a video captured by a wide field fluorescence micro-
scope and containing about 280 patterns (excluding those
touching the borders).
The fitting process is the most time-consuming step of

the analysis. It takes 2 seconds for each image on a PC
with Intel Core i7-4800MQ 2.7 GHz with 16 GB RAM.
As analyzing one sequence requires to test two models on
250 frames, the overall process for one cluster containing
cells takes 25 min. However, we used a computing cluster
to process hundreds of cell clusters simultaneously.

Precision of the event detection
The dataset proposed was subject to a fully manual analy-
sis on one hand and a fully automated analysis on the other
hand. In both cases, the goal was to retrieve the sequences
containing a transition from two to three cells and the
exact time frame of this transition in order to measure
the division angle. Figure 8 shows a few examples of those
transition events automatically detected. Table 1 describes
in detail the pattern and event count along the process.
In summary, about 40 % of the pattern contained no cells,
10 % contained obviously too many cells at the beginning
of the sequence to be processed further and 50 % were
processed further using the proposed analysis to search
for a possible transition from two to three cells. Eventually,
the manual analysis identified that 15 % of the sequence
contained a transition from two to three cells, while
the automated analysis only found 10 %. Interestingly,

for any condition, at least 80 % of the events found auto-
matically were also part of the event found manually (this
could be called the precision as we are confident in our
case that our manual analysis is very close to the ground
truth). A teddious investigation of the differences between
the manual and the automated analysis led to the conclu-
sion that the automated method could sometimes fail in
the case where some debris crossed the field of view, in
case of dead cells or when two cells divided at the same
time to produce four cells. Eventually, the event could also
be missed when no clear significant peak arises in the
derivative of the feature over time, due to extreme cases of
simultaneous out of focus and overlapping.

Accuracy of the angle distributions
Most importantly, whatever the error rate the algorithm
or a human could make, we could assess here that both
reach the same conclusion regarding the impact of a per-
turbation at a 10 % significance level. This can be observed
on two statistical analyses. On one hand, in Table 2 a
Kolmogorov-Smirnov test cannot reject the hypothesis of
similarity between the angle distributions obtained man-
ually and automatically for each condition. On the other
hand, Table 3 shows that the comparison between any two
pairs of conditions reaches also a similar conclusion: the
similarity between distributions is systematically rejected.
It should also be noted that while the difference between
controls (Cyclophilin vs LGN) is still confirmed by the
two approches at a 5 % significance level, the automated
analysis seems to remain less accurate than the manual
one at detecting a more subtle change in the distribution
produced by the siRNA against p62.

Discussion
In order to factor out some possible issues that may have
occured we performed additional tests.

Fig. 10 Sorted results. a presents 6 events of interest showing cells dividing in alignment with the previous two cells while (b) presents 6 other
events where the division occurs orthogonally to the previous two cells. Scalebar is 20 μm
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Fig. 11 The location and the angle of a mitotic event are not correlated. For each condition we plot the angle found for each sequence versus the
distance from the mitotic event to the center of the pattern. Those plot show that there is no correlation between the position where the angle was
measured on the pattern and the value of this angle

Possible bias induced by the statistical test
Interestingly, Fig. 9 shows that the distributions of angles
we obtained were not mono-modal or Gaussian-like as
we may have expected, but rather bimodal (extreme case
examples of those two phenotypes could be retrieved from
the automated analysis, see Fig. 10). In order to take into
account this, statistical tests known to be more sensitive
to the sides of a distribution, such as the Anderson-
Darling test, were also tried but they reached very similar
conclusions (data not shown).

Possible bias produced by the pattern
As the pattern’s edge forms a barrier and the pattern’ size
is in the order of the cell size, division is constrained. How-
ever, we investigated if there was any relation between
the angle and the position of the cells on the pattern (e.g.
are cells dividing closer to the edge more likely to divide
orthogonally?). The Fig. 11 shows that the position on the
pattern has no effect on the angle.

Conclusion
In this paper we proposed a high throughput method to
automatically detect the transition of a cell cluster from
two to three cells in thousands of videos. The proposed
algorithm performs a robust implicit tracking of cells even
when they are packed, overlap or are not clearly distin-
guishable. The approach is based on a robust fitting of
two-dimensional Gaussian mixture models with two and
three components on each frame of the video. We showed
that the derivatives of the residual ratio between the two
models, the distance between the two closest centers and
the variation of intensity between them was sufficient to
detect the exact time of an event of interest. We showed,

using three independent conditions, that the distributions
of angles obtained automatically were very similar to those
obtained through a very tedious manual annotation that
took several days and would be impossible to concretely
extend to hundreds of conditions. While the focus of our
study was to monitor the division orientation, the same
principle can easily be extended to many other questions
through the calculation of other features obtained using
the proposed approach.
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