R. J. Britten and D. E. Kohne, Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms, Science, vol.161, pp.529-569, 1968.

. Arabidopsis-genome-initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, vol.408, pp.796-815, 2000.

T. Wicker, W. Zimmermann, D. Perovic, A. H. Paterson, M. Ganal et al., A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats, Plant J Cell Mol Biol, vol.41, pp.184-94, 2005.

N. Buisine, H. Quesneville, and V. Colot, Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets, Genomics, vol.91, pp.467-75, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00280496

P. S. Schnable, D. Ware, R. S. Fulton, J. C. Stein, F. Wei et al., The B73 maize genome: complexity, diversity, and dynamics, Science, vol.326, pp.1112-1117, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00751527

R. K. Slotkin and R. Martienssen, Transposable elements and the epigenetic regulation of the genome, Nat Rev Genet, vol.8, pp.272-85, 2007.

B. Mcclintock, The origin and behavior of mutable loci in maize, Proc Natl Acad Sci, vol.36, pp.344-55, 1950.

R. Rebollo, M. T. Romanish, and D. L. Mager, Transposable elements: an abundant and natural source of regulatory sequences for host genes, Annu Rev Genet, vol.46, pp.21-42, 2012.

L. E. Orgel and F. H. Crick, Selfish DNA: the ultimate parasite, Nature, vol.284, pp.604-611, 1980.

C. E. Ellison and D. Bachtrog, Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements, eLife, vol.4, p.5899, 2015.

A. E. Van't-hof, P. Campagne, D. J. Rigden, C. J. Yung, J. Lingley et al., The industrial melanism mutation in British peppered moths is a transposable element, Nature, vol.534, pp.102-107, 2016.

A. Studer, Q. Zhao, J. Ross-ibarra, and J. Doebley, Identification of a functional transposon insertion in the maize domestication gene tb1, Nat Genet, vol.43, pp.1160-1163, 2011.

I. Makarevitch, A. J. Waters, P. T. West, M. Stitzer, C. N. Hirsch et al., Transposable elements contribute to activation of maize genes in response to abiotic stress, PLoS Genet, vol.11, p.1004915, 2015.

V. Horváth, M. Merenciano, and J. González, Revisiting the relationship between transposable elements and the eukaryotic stress response, Trends Genet TIG, vol.33, pp.832-873, 2017.

M. J. Dubin, M. Scheid, O. Becker, and C. , Transposons: a blessing curse, Curr Opin Plant Biol, vol.42, pp.23-32, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01713131

A. Hua-van, L. Rouzic, A. Boutin, T. S. Filée, J. Capy et al., The struggle for life of the genome's selfish architects, Biol Direct, vol.6, p.19, 2011.

D. Lisch, How important are transposons for plant evolution?, Nat Rev Genet, vol.14, pp.49-61, 2013.

E. Casacuberta and J. González, The impact of transposable elements in environmental adaptation, Mol Ecol, vol.22, pp.1503-1520, 2013.

M. I. Tenaillon, J. D. Hollister, and B. S. Gaut, A triptych of the evolution of plant transposable elements, Trends Plant Sci, vol.15, pp.471-479, 2010.

D. A. Petrov, A. Fiston-lavier, M. Lipatov, K. Lenkov, and J. González, Population genomics of transposable elements in Drosophila melanogaster, Mol Biol Evol, vol.28, pp.1633-1677, 2011.

S. I. Wright, N. Agrawal, and T. E. Bureau, Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana

, Genome Res, vol.13, pp.1897-903, 2003.

L. Quadrana, B. Silveira, A. Mayhew, G. F. Leblanc, C. Martienssen et al., The Arabidopsis thaliana mobilome and its impact at the species level. eLife, vol.5, 2016.

F. Maumus and H. Quesneville, Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana, Nat Commun, vol.5, p.4104, 2014.

J. Wu, Z. Wang, Z. Shi, S. Zhang, R. Ming et al., The genome of the pear (Pyrus bretschneideri Rehd.), Genome Res, vol.23, pp.396-408, 2013.

R. Ming, S. Hou, Y. Feng, Q. Yu, A. Dionne-laporte et al., The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus), Nature, vol.452, pp.991-997, 2008.

J. Vielle-calzada, M. De-la, O. Vega, G. Hernández-guzmán, E. Ibarra-laclette et al., The Palomero genome suggests metal effects on domestication, Science, vol.326, p.1078, 2009.

B. Piegu, R. Guyot, N. Picault, A. Roulin, A. Sanyal et al., Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice, Genome Res, vol.16, pp.1262-1271, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164404

M. C. Ungerer, S. C. Strakosh, and Y. Zhen, Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation, Curr Biol CB, vol.16, pp.872-875, 2006.

C. M. Vicient and J. M. Casacuberta, Impact of transposable elements on polyploid plant genomes, Ann Bot, vol.120, pp.195-207, 2017.

J. De-meaux and A. Pecinka, The Arabidopsis genus, Mob Genet Elem, vol.2, pp.142-146, 2012.

T. T. Hu, P. Pattyn, E. G. Bakker, J. Cao, J. Cheng et al., The Arabidopsis lyrata genome sequence and the basis of rapid genome size change, Nat Genet, vol.43, pp.476-81, 2011.

J. D. Hollister and B. S. Gaut, Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression, Genome Res, vol.19, pp.1419-1447, 2009.

J. D. Hollister, L. M. Smith, Y. Guo, F. Ott, D. Weigel et al., Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata, Proc Natl Acad Sci, vol.108, pp.2322-2329, 2011.

F. He, X. Zhang, J. Hu, F. Turck, X. Dong et al., Widespread interspecific divergence in cis-regulation of transposable elements in the Arabidopsis genus, Mol Biol Evol, vol.29, pp.1081-91, 2012.

D. Charlesworth and B. Charlesworth, Transposable elements in inbreeding and outbreeding populations, Genetics, vol.140, pp.415-422, 1995.

S. I. Wright, R. W. Ness, J. P. Foxe, and S. Barrett, Genomic consequences of outcrossing and Selfing in plants, Int J Plant Sci, vol.169, pp.105-123, 2008.

T. S. Boutin, L. Rouzic, A. Capy, and P. , How does selfing affect the dynamics of selfish transposable elements?, Mob DNA, vol.3, p.5, 2012.

C. Roux, V. Castric, M. Pauwels, S. I. Wright, P. Saumitou-laprade et al., Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation?, PLoS One, vol.6, p.26872, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00644381

R. V. Briskine, T. Paape, R. Shimizu-inatsugi, T. Nishiyama, S. Akama et al., Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology, Mol Ecol Resour, vol.17, pp.1025-1061, 2017.

M. Karam, D. Souleman, M. S. Schvartzman, S. Gallina, J. Spielmann et al., Genetic architecture of a plant adaptive trait: QTL mapping of intraspecific variation for tolerance to metal pollution in Arabidopsis halleri, Heredity, vol.122, issue.6, pp.877-92, 2019.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinforma Oxf Engl, vol.31, pp.3210-3212, 2015.

M. Remm, C. E. Storm, and E. L. Sonnhammer, Automatic clustering of orthologs and in-paralogs from pairwise species comparisons, J Mol Biol, vol.314, pp.1041-52, 2001.

M. S. Schvartzman, M. Corso, N. Fataftah, M. Scheepers, C. Nouet et al., Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri, New Phytol, vol.218, pp.269-82, 2018.

E. Sonnhammer and G. Östlund, InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic, Nucleic Acids Res, vol.43, pp.234-243, 2015.

C. Hoede, S. Arnoux, M. Moisset, T. Chaumier, O. Inizan et al., PASTEC: an automatic transposable element classification tool, PLoS One, vol.9, p.91929, 2014.

J. S. Johnston, A. E. Pepper, A. E. Hall, Z. J. Chen, G. Hodnett et al., Evolution of genome size in Brassicaceae, Ann Bot, vol.95, pp.229-264, 2005.

R. Cordaux, S. K. Sen, M. K. Konkel, and M. A. Batzer, Computational methods for the analysis of primate mobile elements, Methods Mol Biol, vol.628, pp.137-51, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00492281

L. Rouzic, A. Payen, T. Hua-van, and A. , Reconstructing the evolutionary history of transposable elements, Genome Biol Evol, vol.5, pp.77-86, 2013.

S. Kubota, T. Iwasaki, K. Hanada, A. J. Nagano, A. Fujiyama et al., A genome scan for genes underlying microgeographic-scale local adaptation in a wild Arabidopsis species, PLoS Genet, vol.11, p.1005361, 2015.

D. K. Seymour, D. Koenig, J. Hagmann, C. Becker, and D. Weigel, Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization, PLoS Genet, vol.10, 2014.

N. De-la-chaux, T. Tsuchimatsu, K. K. Shimizu, and A. Wagner, The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata, Mob DNA, vol.3, issue.2, 2012.

T. Slotte, K. M. Hazzouri, J. A. Ågren, D. Koenig, F. Maumus et al., The Capsella rubella genome and the genomic consequences of rapid mating system evolution, Nat Genet, vol.45, pp.831-836, 2013.

S. I. Wright and D. J. Schoen, Transposon dynamics and the breeding system, Genetica, vol.107, pp.139-187, 1999.

S. R. Richardson, A. J. Doucet, H. C. Kopera, J. B. Moldovan, J. L. Garcia-perez et al., The Influence of LINE-1 and SINE Retrotransposons on, Mammalian Genomes. Microbiol Spectr, vol.3, pp.3-0061, 2015.

K. Han, E. L. Braun, R. T. Kimball, S. Reddy, R. Bowie et al., Are transposable element insertions homoplasy free?: an examination using the avian tree of life, Syst Biol, vol.60, pp.375-86, 2011.

D. A. Petrov, T. A. Sangster, J. S. Johnston, D. L. Hartl, and K. L. Shaw, Evidence for DNA loss as a determinant of genome size, Science, vol.287, pp.1060-1062, 2000.

H. Mao and H. Wang, Distribution, diversity, and Long-term retention of grass short interspersed nuclear elements (SINEs)

, Genome Biol Evol, vol.9, pp.2048-56, 2017.

M. Chakraborty, N. W. Vankuren, R. Zhao, X. Zhang, S. Kalsow et al., Hidden genetic variation shapes the structure of functional elements in Drosophila, Nat Genet, vol.50, pp.20-25, 2018.

T. Stuart, S. R. Eichten, J. Cahn, Y. V. Karpievitch, J. O. Borevitz et al., Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation, eLife, vol.5, 2016.

J. Uzunovi?, E. B. Josephs, J. R. Stinchcombe, and S. I. Wright, Transposable elements are important contributors to standing variation in gene expression in Capsella grandiflora, Mol Biol Evol, p.31028401, 2019.

F. Maumus and H. Quesneville, Impact and insights from ancient repetitive elements in plant genomes, Curr Opin Plant Biol, vol.30, pp.41-47, 2016.

Q. Long, F. A. Rabanal, D. Meng, C. D. Huber, A. Farlow et al., Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden, Nat Genet, vol.45, pp.884-90, 2013.

P. Capy, G. Gasperi, C. Biémont, and C. Bazin, Stress and transposable elements: co-evolution or useful parasites?, Heredity, vol.85, pp.101-107, 2000.

D. Lisch, Epigenetic regulation of transposable elements in plants, Annu Rev Plant Biol, vol.60, pp.43-66, 2009.

A. Bousios and B. S. Gaut, Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts, Curr Opin Plant Biol, vol.30, pp.123-156, 2016.

K. Roessler, A. Bousios, E. Meca, and B. S. Gaut, Modeling interactions between transposable elements and the plant epigenetic response: a surprising reliance on element retention, Genome Biol Evol, 2018.

C. N. Simonti, M. Pavlicev, and J. A. Capra, Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints, Mol Biol Evol, vol.34, pp.2856-69, 2017.

. Fastqc,

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinforma Oxf Engl, vol.30, pp.2114-2134, 2014.

R. Schmieder and R. Edwards, Quality control and preprocessing of metagenomic datasets, Bioinforma Oxf Engl, vol.27, pp.863-867, 2011.

S. Gnerre, I. Maccallum, D. Przybylski, F. J. Ribeiro, J. N. Burton et al., High-quality draft assemblies of mammalian genomes from massively parallel sequence data, Proc Natl Acad Sci, vol.108, pp.1513-1521, 2011.

M. Boetzer and W. Pirovano, SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information, BMC Bioinformatics, vol.15, p.211, 2014.

F. Nadalin, F. Vezzi, and A. Policriti, GapFiller: a de novo assembly approach to fill the gap within paired reads, BMC Bioinformatics, vol.13, p.8, 2012.

M. S. Campbell, C. Holt, B. Moore, and M. Yandell, Genome annotation and curation using MAKER and MAKER-P, Curr Protoc Bioinforma, vol.48, pp.4-11, 2014.

A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinforma Oxf Engl, vol.29, pp.1072-1077, 2013.

H. Quesneville, C. M. Bergman, O. Andrieu, D. Autard, D. Nouaud et al., Combined evidence annotation of transposable elements in genome sequences, PLoS Comput Biol, vol.1, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00009013

T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, Considering transposable element diversification in de novo annotation approaches, PLoS One, vol.6, p.16526, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00956366

I. Ahmed, A. Sarazin, C. Bowler, V. Colot, and H. Quesneville, Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis, Nucleic Acids Res, vol.39, pp.6919-6950, 2011.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with bowtie 2, Nat Methods, vol.9, pp.357-366, 2012.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, pp.10-12, 2011.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

B. Li and C. N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, vol.12, p.323, 2011.

P. Rice, I. Longden, and A. Bleasby, EMBOSS: the European molecular biology open software suite, Trends Genet TIG, vol.16, pp.276-283, 2000.

D. Wang, Y. Zhang, Z. Zhang, J. Zhu, and J. Yu, KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies, Genomics Proteomics Bioinformatics, vol.8, pp.77-80, 2010.

N. Goldman and Z. Yang, A codon-based model of nucleotide substitution for protein-coding DNA sequences, Mol Biol Evol, vol.11, pp.725-761, 1994.

J. Lloyd and D. Meinke, A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis, Plant Physiol, vol.158, pp.1115-1144, 2012.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations