Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

ALFA: annotation landscape for aligned reads

Abstract : The last 10 years have seen the rise of countless functional genomics studies based on Next-Generation Sequencing (NGS). In the vast majority of cases, whatever the species, whatever the experiment, the two first steps of data analysis consist of a quality control of the raw reads followed by a mapping of those reads to a reference genome/transcriptome. Subsequent steps then depend on the type of study that is being made. While some tools have been proposed for investigating data quality after the mapping step, there is no commonly adopted framework that would be easy to use and broadly applicable to any NGS data type. We present ALFA, a simple but universal tool that can be used after the mapping step on any kind of NGS experiment data for any organism with available genomic annotations. In a single command line, ALFA can compute and display distribution of reads by categories (exon, intron, UTR, etc.) and biotypes (protein coding, miRNA, etc.) for a given aligned dataset with nucleotide precision. We present applications of ALFA to Ribo-Seq and RNA-Seq on Homo sapiens, CLIP-Seq on Mus musculus, RNA-Seq on Saccharomyces cerevisiae, Bisulfite sequencing on Arabidopsis thaliana and ChIP-Seq on Caenorhabditis elegans. We show that ALFA provides a powerful and broadly applicable approach for post mapping quality control and to produce a global overview using common or dedicated annotations. It is made available to the community as an easy to install command line tool and from the Galaxy Tool Shed.
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Alice Lebreton Connectez-vous pour contacter le contributeur
Soumis le : lundi 22 avril 2019 - 19:12:53
Dernière modification le : jeudi 5 mai 2022 - 08:36:04


Fichiers éditeurs autorisés sur une archive ouverte


Distributed under a Creative Commons Paternité 4.0 International License




Mathieu Bahin, Benoit Noel, Valentine Murigneux, Charles Bernard, Leila Bastianelli, et al.. ALFA: annotation landscape for aligned reads. BMC Genomics, 2019, 20 (250), pp.1-11. ⟨10.1186/s12864-019-5624-2⟩. ⟨hal-02084432⟩



Consultations de la notice


Téléchargements de fichiers