Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, p.32, 2015.

R. Salakhutdinov, A. Mnih, and G. Hinton, Restricted boltzmann machines for collaborative filtering, Proceedings of the 24th international conference on Machine learning, pp.791-798, 2007.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, pp.1096-1103, 2008.

M. Welling and G. E. Hinton, A new learning algorithm for mean field boltzmann machines, International Conference on Artificial Neural Networks, 2002.

T. Tieleman, Training restricted boltzmann machines using approximations to the likelihood gradient, Proceedings of the 25th international conference on Machine learning, pp.1064-1071, 2008.

H. J. Kappen and F. Rodriguez, Boltzmann machine learning using mean field theory and linear response correction, Advances in neural information processing systems, pp.280-286, 1998.

T. Tanaka, Mean-field theory of boltzmann machine learning, Physical Review E, vol.58, p.2302, 1998.

H. Huang and T. Toyoizumi, Advanced mean-field theory of the restricted boltzmann machine, Physical Review E, vol.91, p.50101, 2015.

M. Gabrié, E. W. Tramel, and F. Krzakala, Training restricted boltzmann machine via the thouless-anderson-palmer free energy, Advances in Neural Information Processing Systems, pp.640-648, 2015.

E. W. Tramel, A. Manoel, F. Caltagirone, M. Gabrié, and F. Krzakala, Inferring sparsity: Compressed sensing using generalized restricted boltzmann machines, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416262

T. Richardson and R. Urbanke, Modern Coding Theory, 2008.

M. Mézard and A. Montanari, Information, Physics and Computation, 2009.

L. Zdeborová and F. Krzakala, Statistical physics of inference: Thresholds and algorithms, 2015.

M. Bayati and A. Montanari, The dynamics of message passing on dense graphs, with applications to compressed sensing, IEEE Transactions on Information Theory, vol.57, pp.764-785, 2011.

S. Rangan, Estimation with random linear mixing, belief propagation and compressed sensing, Information Sciences and Systems (CISS), 2010 44th Annual Conference on, pp.1-6, 2010.

S. Rangan, Generalized approximate message passing for estimation with random linear mixing, IEEE International Symposium on Information Theory Proceedings (ISIT, pp.2168-2172, 2011.

F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, Statistical physics-based reconstruction in compressed sensing, Phys. Rev. X, vol.2, p.21005, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00716897

F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, Probabilistic reconstruction in compressed sensing: Algorithms, phase diagrams, and threshold achieving matrices, J. Stat. Mech, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00764645

M. Mézard, The space of interactions in neural networks: Gardner's computation with the cavity method, Journal of Physics A: Mathematical and General, vol.22, p.2181, 1989.

C. Baldassi, A. Braunstein, N. Brunel, and R. Zecchina, Efficient supervised learning in networks with binary synapses, BMC Neuroscience, vol.8, p.1, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00174082

C. Baldassi and A. Braunstein, A max-sum algorithm for training discrete neural networks, Journal of Statistical Mechanics: Theory and Experiment, p.8008, 2015.

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, PNAS, vol.79, pp.2554-2558, 1982.

M. Mézard, G. Parisi, and M. A. Virasoro, Spin-Glass Theory and Beyond, 1987.

D. J. Thouless, P. W. Anderson, and R. G. Palmer, Solution of'solvable model of a spin glass, Philosophical Magazine, vol.35, pp.593-601, 1977.

Y. Kabashima and D. Saad, The tap approach to intensive and extensive connectivity systems, Advanced Mean Field Methods-Theory and Practice, vol.6, pp.65-84, 2001.

K. Nakanishi and H. Takayama, Mean-field theory for a spin-glass model of neural networks: Tap free energy and the paramagnetic to spin-glass transition, Journal of Physics A: Mathematical and General, vol.30, p.8085, 1997.

M. Shamir and H. Sompolinsky, Thouless-anderson-palmer equations for neural networks, Physical Review E, vol.61, p.1839, 2000.

D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Physical review letters, vol.35, p.1792, 1975.

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Spin-glass models of neural networks, Physical Review A, vol.32, p.1007, 1985.

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Storing infinite numbers of patterns in a spin-glass model of neural networks, Physical Review Letters, vol.55, p.1530, 1985.

Y. Kabashima, A cdma multiuser detection algorithm on the basis of belief propagation, Journal of Physics A: Mathematical and General, vol.36, p.11111, 2003.

T. Tanaka and M. Okada, Approximate belief propagation, density evolution, and statistical neurodynamics for cdma multiuser detection, IEEE Transactions on Information Theory, vol.51, pp.700-706, 2005.
DOI : 10.1109/tit.2004.840887

A. Montanari and D. Tse, Analysis of belief propagation for non-linear problems: The example of cdma (or: How to prove tanaka's formula), 2006 IEEE Information Theory Workshop-ITW'06 Punta del Este, pp.160-164, 2006.

D. Guo and C. Wang, Asymptotic mean-square optimality of belief propagation for sparse linear systems, Information Theory Workshop, 2006. ITW '06 Chengdu, pp.194-198, 2006.

D. L. Donoho, A. Maleki, and A. Montanari, Message-passing algorithms for compressed sensing, Proc. Natl. Acad. Sci, vol.106, pp.18914-18919, 2009.
DOI : 10.1073/pnas.0909892106

URL : http://www.pnas.org/content/106/45/18914.full.pdf

J. T. Parker, V. Cevher, and P. Schniter, Compressive sensing under matrix uncertainties: An approximate message passing approach, Conference Record of the Forty Fifth Asilomar Conference on Signals, pp.804-808, 2011.
DOI : 10.1109/acssc.2011.6190118

URL : http://ece.osu.edu/%7Eschniter/pdf/asil11_mu.pdf

P. Schniter, J. Parker, and V. Cevher, Bilinear generalized approximate message passing (big-amp) for matrix recovery problem, Workshop on Information Theory and Applications (ITA), 2012.

M. V. and P. L. , Distribution of eigenvalues for some sets of random matrices, Math. USSR Sb, vol.1, p.457, 1967.

E. Bolthausen, An iterative construction of solutions of the tap equations for the sherrington-kirkpatrick model, Communications in Mathematical Physics, vol.325, pp.333-366, 2014.

M. Opper and O. Winther, Adaptive and self-averaging thouless-anderson-palmer meanfield theory for probabilistic modeling, Physical Review E, vol.64, p.56131, 2001.
DOI : 10.1103/physreve.64.056131

URL : http://orbit.dtu.dk/files/4889205/Opper.pdf

Y. Deshpande and A. Montanari, Sparse pca via covariance thresholding, Advances in Neural Information Processing Systems, pp.334-342, 2014.

T. Lesieur, F. Krzakala, and L. Zdeborov, Mmse of probabilistic low-rank matrix estimation: Universality with respect to the output channel, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing, pp.680-687, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01222294

F. Krzakala and L. Zdeborová, Hiding quiet solutions in random constraint satisfaction problems, Phys. Rev. Lett, vol.102, p.238701, 2009.
DOI : 10.1103/physrevlett.102.238701

URL : http://arxiv.org/pdf/0901.2130