Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data - ENS - École normale supérieure Accéder directement au contenu
Article Dans Une Revue Hydrology and Earth System Sciences Année : 2018

Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data

Hyungjun Kim

Résumé

Soil moisture is a key variable of land surface hydrology, and its correct representation in land surface models is crucial for local to global climate predictions. The errors may come from the model itself (structure and parameterization) but also from the meteorological forcing used. In order to separate the two source of errors, four atmospheric forcing datasets, GSWP3 (Global Soil Wetness Project Phase 3), PGF (Princeton Global meteorological Forcing), CRU-NCEP (Climatic Research Unit-National Center for Environmental Prediction), and WFDEI (WATCH Forcing Data methodology applied to ERA-Interim reanalysis data), were used to drive simulations in China by the land surface model ORCHIDEE-MICT(ORganizing Carbon and Hydrology in Dynamic EcosystEms: aMeliorated Interactions between Carbon and Temperature). Simulated soil moisture was compared with in situ and satellite datasets at different spatial and temporal scales in order to (1) estimate the ability of ORCHIDEE-MICT to represent soil moisture dynamics in China; (2) demonstrate the most suitable forcing dataset for further hydrological studies in Yangtze and Yellow River basins; and (3) understand the discrepancies of simulated soil moisture among simulations. Results showed that ORCHIDEE-MICT can simulate reasonable soil moisture dynamics in China, but the quality varies with forcing data. Simulated soil moisture driven by GSWP3 and WFDEI shows the best performance according to the root mean square error (RMSE) and correlation coefficient, respectively, suggesting that both GSWP3 and WFDEI are good choices for further hydrological studies in the two catchments. The mismatch between simulated and observed soil moisture is mainly explained by the bias of magnitude, suggesting that the parameterization in ORCHIDEE-MICT should be revised for further simulations in China. Underestimated soil moisture in the North China Plain demonstrates possible significant impacts of human activities like irrigation on soil moisture variation, which was not considered in our simulations. Finally, the discrepancies of meteorological variables and simulated soil moisture among the four simulations are analyzed. The result shows that the discrepancy of soil moisture is mainly explained by differences in precipitation frequency and air humidity rather than differences in precipitation amount.

Domaines

Hydrologie
Fichier principal
Vignette du fichier
hess-22-5463-2018.pdf (2.73 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01919559 , version 1 (12-11-2018)

Licence

Paternité

Identifiants

Citer

Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, et al.. Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data. Hydrology and Earth System Sciences, 2018, 22 (10), pp.5463-5484. ⟨10.5194/hess-22-5463-2018⟩. ⟨hal-01919559⟩
495 Consultations
160 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More