P. Audebert and F. Miomandre, Electrofluorochromism: from molecular systems to set-up and display, Chem. Sci, vol.4, pp.575-584, 2013.

H. Al-kutubi, H. R. Zafarani, L. Rassaei, and K. Mathwig, Electrofluorochromic systems: molecules and materials exhibiting redox-switchable fluorescence, Eur. Polym. J, vol.83, pp.478-498, 2016.

Z. Lou, P. Li, and K. Han, Redox-responsive fluorescent probes with different design strategies, Acc. Chem. Res, vol.48, pp.1358-1368, 2015.

T. F. Brewer, F. J. Garcia, C. S. Onak, K. S. Carroll, and C. J. Chang, Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADVII oxidase proteins, Annu. Rev. Biochem, vol.84, pp.765-790, 2015.

Z. Huang, Q. Yao, J. Chen, and Y. Gao, Redox supramolecular self-assemblies nonlinearly enhance fluorescence to identify cancer cells, Chem. Commun, vol.54, pp.5385-5388, 2018.

R. Martínez, I. Ratera, A. Tárraga, P. Molina, and J. Veciana, A simple and robust reversible redoxfluorescence molecular switch based on a 1,4-disubstituted azine with ferrocene and pyrene units, Chem. Commun, vol.36, pp.3809-3811, 2006.

R. Zhang, Z. Wang, Y. Wu, H. Fu, and J. Yao, A novel redox-fluorescence switch based on a triad containing ferrocene and perylene diimide units, Org. Lett, vol.10, pp.3065-3068, 2008.

R. Zhang, Y. Wu, Z. Wang, W. Xue, H. Fu et al., Effects of photoinduced electron transfer on the rational design of molecular fluorescence switch, J. Phys. Chem. C, vol.113, pp.2594-2602, 2009.

O. Galangau, I. Fabre-francke, S. Munteanu, C. Dumas-verdes, G. Clavier et al., Electrochromic and electrofluorochromic properties of a new boron dipyrromethene-ferrocene conjugate, Electrochim. Acta, vol.87, pp.809-815, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00906515

E. Maligaspe, T. J. Pundsack, L. M. Albert, Y. V. Zatsikha, P. V. Solntsev et al., Synthesis and charge-transfer dynamics in a ferrocene-containing organoboryl azaBODIPY donor-acceptor triad with boron as the hub, Inorg. Chem, vol.54, pp.4167-4174, 2015.

Y. Zhou, K. T. Ngo, B. Zhang, Y. Feng, and J. Rochford, Synthesis, electronic and photophysical characterization of pi-conjugated meso-ferrocenyl-porphyrin fluorescent redox switches, Organometallics, vol.33, pp.7078-7090, 2014.

J. Rochford, A. D. Rooney, and M. T. Pryce, Redox control of meso-Zinc(II) ferrocenylporphyrin based fluorescence switches, Inorg. Chem, vol.46, pp.7247-7249, 2007.

M. Tropiano, N. L. Kilah, M. Morten, H. Rahman, J. J. Davis et al., Reversible luminescence switching of a redox-active ferrocene-europium dyad, J. Am. Chem. Soc, vol.133, pp.11847-11849, 2011.

S. Chen, J. Lu, C. Sun, and H. Ma, A highly specific ferrocene-based fluorescent probe for hypochlorous acid and its application to cell imaging, Analyst, pp.577-582, 2010.

H. Yang, Z. Zhou, K. Huang, M. Yu, F. Li et al., Multisignaling opticalelectrochemical sensor for Hg 2+ based on a rhodamine derivative with a ferrocene unit, Org. Lett, vol.9, pp.4729-4732, 2007.

C. Arivazhagan, R. Borthakur, and S. Ghosh, Ferrocene and triazole-appended rhodamine based multisignaling sensors for Hg 2+ and their application in live cell imaging, Organometallics, vol.34, pp.1147-1155, 2015.

Y. Fang, Y. Zhou, Q. Rui, and C. Yao, Rhodamine-ferrocene conjugate chemosensor for selectively sensing copper(II) with multisignals: chromaticity, fluorescence, and electrochemistry and its application in living cell imaging, Organometallics, vol.34, pp.2962-2970, 2015.

K. Huang, H. Yang, Z. Zhou, M. Yu, F. Li et al., Multisignall chemosensor for Cr(3+) and its application in bioimaging, Org. Lett, vol.10, pp.2557-2560, 2008.

H. Ouyang, Y. Gao, and Y. Yuan, A highly selective rhodamine-based optical-electrochemical multichannel chemosensor for Fe 3+, Tetrahedron Lett, vol.54, pp.2964-2966, 2013.

D. D. Huang, M. Zhao, X. X. Lv, Y. Y. Xing, D. Chen et al., Highly sensitive and selective detection of Pd 2+ ions using a ferrocene-rhodamine conjugate triple channel receptor in aqueous medium and living cells, Analyst, vol.143, pp.511-518, 2018.

M. Beija, C. A. Afonso, and J. M. Martinho, Synthesis and applications of rhodamine derivatives as fluorescent probes, Chem. Soc. Rev, vol.38, pp.2410-2433, 2009.

M. ?í?ková, L. Cattiaux, J. Mallet, E. Labbé, and O. Buriez, Electrochemical switching fluorescence emission in rhodamine derivatives, Electrochimica Acta, vol.260, pp.589-597, 2018.

G. Despras, A. I. Zamaleeva, L. Dardevet, C. Tisseyre, J. G. Magalhaes et al.,

S. Waard, A. Amigorena, J. Feltz, M. Mallet, and . Collot, H-rubies, a new family of red emitting fluorescent pH sensors for living cells, Chem. Sci, vol.6, pp.5928-5937, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01197099

J. M. Casa-solvas, E. Ortiz-salmerón, J. J. Giménez-martínez, L. García-fuentes, L. F. Capitánvallvey et al., Ferrocene-carbohydrate conjugates as electrochemical probes for molecular recognition studies, Chem. Eur. J, vol.15, pp.710-725, 2009.

R. R. Gagne, C. A. Koval, and G. C. Lisensky, Ferrocene as an internal standard for electrochemical measurements, Inorg. Chem, vol.19, pp.2854-2855, 1980.

X. Liu, A. Savy, S. Maurin, L. Grimaud, F. Darchen et al., A dual functional electroactive and fluorescent probe for coupled measurements of vesicular exocytosis with high spatial and temporal resolution, Angew. Chem. Int. Ed, vol.56, pp.2366-2370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01452874

A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical report), Pure Appl. Chem, vol.83, pp.2213-2228, 2011.

T. Lu, Y. Pan, S. Kao, C. Li, I. Kohane et al., Gene regulation and DNA damage in the ageing human brain, Nature, pp.883-891, 2004.

K. Xu, M. Qiang, W. Gao, R. Su, N. Li et al., A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo, Chem. Sci, vol.4, pp.1079-1086, 2013.

C. Amatore, E. Labbé, and O. Buriez, Molecular electrochemistry: a central method to understand the metabolic activation of therapeutic agents. The example of metallocifen anticancer drug candidates, Current Opinion in Electrochemistry, vol.2, pp.7-12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01444881

G. Jaouen, A. Vessières, and S. Top, Ferrocifen type anti-cancer drugs, Chem. Soc. Rev, vol.44, pp.8802-8817, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221048

Y. G. De-paiva, F. D. Ferreira, T. L. Silva, E. Labbé, O. Buriez et al., Electrochemically driven supramolecular interaction of quinones and ferrocifens: an example of redox activation of bioactive compounds, Curr. Top. Med. Chem, vol.15, pp.136-162, 2015.

S. Jana, M. Sinha, D. Chanda, T. Roy, K. Banerjee et al., Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease, Biochim. Biophys. Acta, pp.663-673, 2011.