Fault reactivation and selective abandonment in the oceanic lithosphere

M. Delescluse, L. G. J. Montési, Nicolas Chamot-Rooke

To cite this version:

Fault reactivation and selective abandonment in the oceanic lithosphere

M. Delescluse,1,2 L. G. J. Montési,3 and N. Chamot-Rooke1

Received 20 June 2008; revised 21 July 2008; accepted 24 July 2008; published 29 August 2008.

[1] Normal and transform faults originally formed at a spreading-centre can be reactivated in diffuse plate boundary zones and in areas of lithospheric flexure such as at peripheral bulges to subduction zones. Using new seismic reflection profiles and modeling, we investigate how the original oceanic fabric is reactivated in the simple case of fault perpendicular compression. In the Central Indian Basin, well-oriented normal paleofaults were reactivated with reverse motion at the very onset of deformation (9 Ma) but only a small subset remained active past ~7 Ma, suggesting that most of the densely spaced small-offset faults were abandoned while deformation localized onto fewer faults with larger spacing. We find a similar evolution using a 2D finite element code of lithospheric shortening using a pseudoplastic rheology. Weak zones, 3 km-spaced and 30–40% weaker than the surrounding material, are introduced to simulate the fabric formed at the ridge axis. We show that reactivation and selective abandonment require strain weakening followed by strain-rate weakening once a maturation threshold is reached. A maturation fault slip of less than 50 m is needed to produce weakening once a maturation threshold is reached. A requirement strain weakening followed by strain-rate weakening is needed to simulate the fabric formed at the ridge axis.

[2] In the eastern CIB and in the Wharton Basin (C), N–S fracture zones are reactivated with a sinistral strike-slip motion decoupling the Australia plate from its Indian counterpart [Deplus et al., 1998; Delescluse and Chamot-Rooke, 2007]. The same network of sinistral faults was reactivated immediately after the great Sumatra earthquake.

[3] Figure 2 presents portions of one multichannel line (Phe`dre Leg 1 survey [Chamot-Rooke et al., 1993]), and
two high resolution seismic profiles acquired during the Andaman 2000 survey (see Figure 1 for their location). Figure 2a clearly shows an inverted basin: the original normal fault, traced inside the crust, is presently reused as thrust. Reverse motion on this fault is kilometric, and many others large-offset faults have been imaged through seismic profiling [Bull and Scrutton, 1992; Chamot-Rooke et al., 1993; Van Orman et al., 1995]. Small-offset faults have received less attention: they require high resolution seismic surveys to be imaged, and they are inferred to contribute little to the total shortening [Van Orman et al., 1995]. Small-offset faults have the expected initial normal faults spacing, suggesting that they do represent the original fabric acquired at the ridge axis. This spacing is significantly less than the 5–11 km reported earlier [Chamot-Rooke et al., 1993; Van Orman et al., 1995] due to the incompleteness of the fault catalogues towards the small offsets.

Careful re-examination of the seismic lines shows that deformation started prior to the main Upper Miocene unconformity drilled at ODP Leg 116 site: the onset of significant deformation is around 7 Ma [Cochran et al., 1989], but faults were active as early as 9 Ma [Delescluse and Chamot-Rooke, 2008], and even possibly earlier but at smaller strain rate (K. S. Krishna et al., Early (pre-8 Ma) fault activity and temporal strain accumulation in the central Indian Ocean, submitted to Geology, 2008). In detail, Figure 2d shows that even after flattening of the 7 Ma unconformity, the earlier 9 Ma presents reverse offsets at small faults that nucleate in the basement. These small-offset faults become inactive soon after the onset of deformation, as the thick sedimentary sequence above the 7 Ma unconformity remained undeformed. High resolution profiler data confirmed that many of these small faults have no present-day surface expression which means that only a widely-spaced subset of these faults remain active to the present. Today, tilted blocks bounded by the largest faults have a longer 20–30 km spacing. Notice that some of these major faults localized deformation from the very onset throughout (Figure 2).

We performed a systematic binning of the cumulative fault slip along seismic lines that cross the deformation zone in order to quantify shortening accommodated by different fault-offset ranges (Figure 1). As previously discussed by a number of authors, the total amount of shortening is increasing from west to east as a result of India-Australia kinematics [DeMets et al., 2005]. However, faults with small offsets do not follow this eastward increase: they accommodate the same amount of shortening (~1%) in the west (where they accommodate most of the deformation) and in the east (where they accommodate only a small
part of deformation). Note that small offset faults are not resolved in the Phèdre lines as only low frequency seismic data are available.

[11] Based on the observations, we hypothesize the existence of a threshold process whereby most reactivated faults are abandoned after a given amount of slip. Deformation then concentrates on fewer still active larger faults. We call this process selective abandonment.

3. Modeling Strain and Strain-Rate Weakening

[12] We model the selective abandonment of reactivated faults using the Lagrangian finite element code LAYER [Neumann and Zuber, 1995]. This software utilizes a viscous-pseudoplastic rheology [Chen and Morgan, 1990], whereby the viscosity in each element, \(\eta \), is adjusted from a value consistent with power law creep, \(\eta_{pl} \), to limit strain to a yield strength \(\sigma_y \)

\[
\eta = \min(\eta_{pl}, \sigma_y/2\dot{\varepsilon}_H)
\]

(1)

where \(\dot{\varepsilon}_H \) is the second invariant of the strain rate in each element.

[13] Neumann and Zuber [1995] implemented a strain-rate weakening law to simulate the localization of deformation along narrow zones (faults) in a pseudo-brittle over ductile two-layer medium in extension [Neumann and Zuber, 1995; Behn et al., 2002] and in compression [Montesi and Zuber, 2003b]. In these studies, faults initiate based on numerical noise rather than a priori constraints. However, a fault network with systematic fault spacing develops simultaneously to longer wavelength lithospheric buckling [Montesi and Zuber, 2003c].

[14] At variance with Montesi and Zuber [2003a], who suggested reactivation only in the vicinity of predicted localization instability wavelength, our new data lead us to consider the near complete reactivation of the spreading ridge normal faults. To capture this behavior, we modified LAYER to consider both strain weakening and strain-rate weakening (Figure 3). The yield strength increases with depth according to

\[
\sigma_y = (C_0 + C_{pgz})K
\]

(2)

where \(C_0 \) is the cohesion, \(C \) the frictional term, \(\rho \) the density, \(g \) the acceleration of gravity, and \(K \) is the weakening factor. There are two sources of weakening. Initially, the yield strength decreases linearly with strain, by a factor \(W_\varepsilon \), up to a critical strain \(\varepsilon_c \). When strain exceeds a maturation threshold \(\varepsilon_m \) (equivalent to a critical fault slip), the weakening factor becomes strain-rate dependent [Marone and Cox, 1994; Beeler et al., 1996].

Figure 2. (a) Multichannel line (Phèdre Leg 1 survey) showing an inverted basin and associated reverse fault in the crust (1:1). (b) High resolution P102 profile shows typical tilted blocks bounded by the main active faults and inactive small offset faults (black arrows). The green layer shows a syn-tectonic sequence below the main unconformity (MU, \(\sim 7 \) Ma) and above the lower unconformity (LU, \(\sim 9 \) Ma). (c) P103 profile. (d) Same profile but with the MU unconformity flattened to better visualize prior deformation. Notice the pre-7 Ma deformation (black arrows). Stars in B and C pinpoint areas where the main reverse fault nucleates on the side of a pre-existing horst structure but with “wrong” vergence (i.e. neoformed fault dipping opposite to the preexisting fault), suggesting that heterogeneities rather than the fault itself act as the main trigger.
The complete expression of K is as follows:

$$
K = \begin{cases}
1 - W_r(\varepsilon/\varepsilon_s) & \varepsilon < \varepsilon_s \\
1 - W_r & \varepsilon_s < \varepsilon < \varepsilon_m \\
(1 - W_r)[1 - W_r \log(\varepsilon/\varepsilon_0)] & \varepsilon > \varepsilon_m
\end{cases}
$$

(3)

where ε_0 and W_r are normalization values (parameter values in auxiliary material Table S1).

The preexisting fabric is represented by patches with non-zero initial strain dipping uniformly and spaced every 3 km (see auxiliary material Text S1 and Figure S1). These weak patches are equivalent to the reduced friction necessary to reactivate slightly oblique preexisting normal faults at trenches [Billen et al., 2007]. The entire model is 225 km long and 80 km thick, with 900 × 160 elements. Element height increases progressively with depth. The modeled lithosphere is shortened at a constant rate with time ($\approx 6.3 \times 10^{-9}$ yr$^{-1}$).

A model that best resembles the central Indian Ocean fault network is shown in Figure 4. Initially, the network of initial strain patches is reactivated uniformly so that after 1.8 Ma of shortening (top), all the initial faults display a small displacement. Subsequently, only a few of the reactivated faults accumulates significant displacement, leading to a network of major faults and pop-up structures with a spacing that is consistent with the localization instability of Montesi and Zuber [2003c]. A wide variety of models were run to test the sensitivity to the model parameters. Timing of the transition from reactivation to selection is mainly controlled by the maturation threshold. A ~ 2 Myr maturation time, as we document in the CIB, requires a maturation slip of less than 50 m. This short period is similar to the stress build-up time required to form the long wavelength lithospheric buckling in previous modeling [Gerbault, 2000]. A longer maturation period is possible in the model, but it would require very slow deformation rate in the early stage to keep the contribution of the small faults around 1% of the total strain, as observed. After 9 Myr of shortening (middle), only major faults are active. Nevertheless, the initial fault network has accumulated sufficient strain (about 1.1% of the total shortening, bottom) to produce structures visible in high resolution seismic data.

4. Conclusions

Our new data point to an early onset of significant deformation in the Central Indian Ocean around 9 Ma. At that time, the entire fault network formed at the ridge axis was reactivated. Few of these faults remained active beyond the time of the major Upper Miocene unconformity (around 7 Ma) following a selective abandonment process. Our modeling offers a physical mechanism for such a process. Strain weakening controls the localization of deformation in the early stage, until strain-rate weakening becomes dominant. The remaining major active faults bound blocks that are 20 to 30 km spaced in the model, with regularly-spaced internal faulting within the blocks themselves. Seismic lines show tilted blocks of the same size bounded by major faults with hundreds of meters of cumulated slip. The maximum offset of the finely spaced fault set constrains the critical offset over which strain weakening is active to be less than 1%.

Figure 3. Evolution of the weakening factor with strain. For strain less than ε_s, strength weakens with strain but beyond a maturation threshold ε_m, strength depends on strain rate. Strength is reduced in shear zones, where strain rate is high (thin line, instantaneous change in strain rate; thick line, progressive change) and vice-versa between shear zones.

Figure 4. Numerical model of selective abandonment. (top) Strain-rate after 1.8 Ma of shortening: the entire preexisting fabric has been reactivated, and abandonment is about to start. (middle) Strain-rate after 9 Ma: strain-rate is maximum along localized widely-spaced shear bands, with residual activity along the preexisting fabric. (bottom) Cumulative strain at the end of the run, showing a fault pattern similar to the Central Indian Basin (see auxiliary material Text S1 and Figure S1).
~50 m. The resulting shortening is significant since it reaches at least 1%. The final picture is a set of sealed small faults and active large faults.

Acknowledgments. We thank Jonathan Bull and Magali Billen for their very constructive reviews. L. G. J. M. was supported by grant OCE-0623188 and a visiting professorship from the Ecole Normale Supérieure.

References

Beeler, N. M., T. E. Tullis, and J. D. Weeks (1996), Frictional behavior of for their very constructive reviews.

N. Chamot-Rooke and M. Delescluse, Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, 24 rue Lhomond, F-75005 Paris, France. (delesclu@geologie.ens.fr)

L. G. J. Montési, Department of Geology, University of Maryland, College Park, MD 20782, USA.