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THE GEOMETRY OF MAXIMAL REPRESENTATIONS OF
SURFACE GROUPS INTO SO0(2, n)

BRIAN COLLIER, NICOLAS THOLOZAN, AND JÉRÉMY TOULISSE

Abstract. In this paper, we study the geometric and dynamical properties
of maximal representations of surface groups into Hermitian Lie groups of
rank 2. Combining tools from Higgs bundle theory, the theory of Anosov
representations, and pseudo-Riemannian geometry, we obtain various results
of interest.

We prove that these representations are holonomies of certain geometric
structures, recovering results of Guichard and Wienhard. We also prove that
their length spectrum is uniformly bigger than that of a suitably chosen Fuch-
sian representation, extending a previous work of the second author. Finally,
we show that these representations preserve a unique minimal surface in the
symmetric space, extending a theorem of Labourie for Hitchin representations
in rank 2.
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1. Introduction

In the past decades, two major theories have allowed many breakthroughs in the
understanding of surface group representations.

On one side, non-abelian Hodge theory gives a bijective correspondence between
conjugacy classes of representations of the fundamental group of a closed Riemann
surface into a semi-simple Lie group and holomorphic objects on the Riemann
surface called Higgs bundles. This theory, developed by Hitchin, Simpson, Corlette
and many others, has proven very useful in describing the topology of character
varieties of surface groups (see [Hit87], [Hit92] or [Got01]).

On the other side, Labourie showed that many surface group representations
share a certain dynamical property called the Anosov property. This property has
strong geometric and dynamical implications similar to the quasi-Fuchsian property
for surface group representations in PSL(2,C).

A recent trend in the field is to try to link these two seemingly disparate theo-
ries (see for instance [AL15, Bar10, CL17]). Such links are far from being well-
understood. For instance, there is no known Higgs bundle characterization of
Anosov representations. The main obstacle is that finding the representation asso-
ciated to a given Higgs bundle involves solving a highly transcendental system of
PDEs called the Higgs bundles equations.

However, in some cases the Higgs bundle equations simplify, and one can hope
to reach a reasonably good understanding of their solutions. These simplifications
happen when the Higgs bundle is cyclic. Unfortunately, not every Higgs bundle is
cyclic. Nevertheless, it turns out that restricting to cyclic Higgs bundles is enough to
study representations into most Lie groups of real rank 2. This was used by Labourie
[Lab17] to study Hitchin representations into PSL(3,R), PSp(4,R) and G2, by the
first author [Col16b] to study some maximal representations in PSp(4,R) and by
the first author with Alessandrini [AC17] to study all maximal representations into
PSp(4,R).

The goal of this paper is to derive from Higgs bundle theory several geometric
properties of representations of surface groups into Hermitian Lie groups of rank 2.
According to the work of Burger–Iozzi–Wienhard [BIW10], it is enough to restrict
to representations into the Lie groups SO0(2, n+ 1), n ≥ 1 (see Remark 1.10).

Geometrization of maximal representations. Hitchin representations into split
real Lie groups [Lab06] and maximal representations into Hermitian Lie groups
[BILW05] are two important families of Anosov representations. One very nice
feature of Anosov representations is that they are holonomies of certain geometric
structures on closed manifolds. More precisely, for every Anosov representation ρ
of a hyperbolic group Γ into a semi-simple Lie group G, Guichard and Wienhard
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[GW12] construct a ρ-invariant open domain Ω in a certain flag manifold G/P on
which ρ(Γ) acts properly discontinuously and co-compactly.

In our setting, their result can be reformulated as follows. Let R2,n+1 denote the
vector space Rn+3 with the quadratic form

q(x) = x2
1 + x2

2 − x2
3 − . . .− x2

n+3 .

We denote by Ein1,n the space of isotropic lines in R2,n+1 and by Pho(R2,n+1) the
space of photons in Ein1,n or, equivalently, of totally isotropic planes in R2,n+1. By
Witt’s theorem, SO0(2, n+ 1) acts transitively on both Ein1,n and Pho(R2,n+1).

Theorem 1.1 (Guichard–Wienhard [GW12]). Let Γ be the fundamental group of a
closed oriented surface Σ of genus at least two. If ρ : Γ→ SO0(2, n+1) is a maximal
representation (n ≥ 2), then there exists an open domain Ωρ in Pho(R2,n+1) on
which Γ acts properly discontinuously and co-compactly via ρ.

In particular, the representation ρ is the holonomy of a photon structure on the
closed manifold ρ(Γ)\Ωρ (see Definition 4.10). One drawback of the construction
of Guichard–Wienhard is that it a priori gives neither the topology of the domain
Ωρ nor the topology of its quotient by ρ(Γ). In forthcoming work [GW17a], a very
clever – but very indirect – argument is used to describe this topology in the case
of Hitchin representations in SL(2n,R). In an earlier paper, they focus on Hitchin
representations into SO0(2, 3)1 and give a more explicit parametrization of (the two
connected components of) Ωρ by triples of distinct points in RP1, thus identifying
ρ(Γ)\Ωρ with the unit tangent bundle of Σ. In this parametrization, however, the
circle bundle structure of the manifold is not apparent.

Here, we will construct photon structures on certain fiber bundles over Σ with
holonomy any prescribed maximal representation in SO0(2, n+1) in such a way that
the fibers are “geometric”. We will show that these photon structures coincide with
the Guichard–Wienhard structures, and thus describe the topology of Guichard–
Wienhard’s manifolds in this setting.

Theorem 1.
Let Γ be the fundamental group of a closed oriented surface Σ of genus at least
two. If ρ : Γ → SO0(2, n + 1) is a maximal representation (n ≥ 2), then there
exists a fiber bundle π : M → Σ with fibers diffeomorphic to O(n)/O(n− 2), and a
Pho(R2,n+1)-structure on M with holonomy ρ ◦ π∗. Moreover, the developing map
of this photon structure induces an isomorphism from each fiber of π to a copy of
Pho(R2,n) ⊂ Pho(R2,n+1).

Conversely, if π : M → Σ is a fiber bundle with fibers diffeomorphic to O(n)/O(n−
2), then any photon structure on M whose developing map induces an isomorphism
from each fiber of π to a copy of Pho(R2,n) ⊂ Pho(R2,n+1) has holonomy ρ ◦ π∗,
where ρ : Γ→ SO0(2, n+ 1) is a maximal representation.

Corollary 2.
The manifold ρ(Γ)\Ωρ in Guichard–Wienhard’s Theorem 1.1 is diffeomorphic to a
O(n)/O(n− 2)-bundle over Σ.

1To be more accurate, Guichard and Wienhard study Hitchin representations into PSL(4,R)
and in particular in PSp(4,R), and their action on the projective space RP3. By a low dimension
exceptional isomorphism, PSp(4,R) is isomorphic to SO0(2, 3) and RP3 identifies (as a PSp(4,R)-
homogeneous space) with Pho(R2,3).
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Remark 1.2. The proof of Theorem 1 in Section 4 gives additional information on
the topology of the fiber bundleM , which depends on certain topological invariants
of the representation ρ.

Hitchin representations into SO0(2, 3) are the special class of maximal represen-
tations that also have a Guichard–Wienhard domain of discontinuity in Ein1,2. In
a manner similar to [GW08], this domain can be parametrized by triples of distinct
points in RP1 so that its quotient by ρ(Γ) is homeomorphic to the unit tangent
bundle to Σ. Here, we recover this Ein1,2 structure (referred to as a conformally
flat Lorentz structure) on the unit tangent bundle to Σ in such a way that the fibers
are “geometric”:

Theorem 3.
Let Γ be the fundamental group of a closed oriented surface Σ of genus at least
two. Let T 1Σ denote the unit tangent bundle to Σ and π : T 1Σ → Σ the bundle
projection. If ρ : Γ → SO0(2, 3) is a Hitchin representation, then there exists a
Ein1,2-structure on T 1Σ with holonomy ρ ◦ π∗. Moreover, the developing map of
this Ein1,2-structure induces an isomorphism from each fiber of π to a copy of
Ein1,0 ⊂ Ein1,2.

For the group SO0(2, 2), Alessandrini and Li [AL15] used Higgs bundle techniques
to construct anti-de Sitter structures on circle bundles over Σ, recovering a result
of Salein and Guéritaud-Kassel [Sal00, GK17].

Length spectrum of maximal representations in rank 2. Some Anosov rep-
resentations of surface groups, such as Hitchin representations into real split Lie
groups or maximal representations into Hermitian Lie groups, have the additional
property of forming connected components of the whole space of representations.
There have been several attempts to propose a unifying characterization of these
representations (see [MZ16] and [GW17b]). Note that quasi-Fuchsian representa-
tions into PSL(2,C) do not form components; indeed, they can be continuously
deformed into representations with non-discrete image.

The property of lying in a connected component consisting entirely of Anosov
representations seems to be related to certain geometric controls of the representa-
tion “from below” such as an upper bound on the entropy or a collar lemma. To be
more precise, let us introduce the length spectrum of a representation.

Definition 1.3. Let ρ be a representation of Γ into SL(n,R), n ≥ 2. Let [Γ] denote
the set of conjugacy classes in Γ. The length spectrum of ρ is the function

Lρ : [Γ] → R+

γ 7→ 1
2 log

∣∣∣ λ1(ρ(γ))
λn(ρ(γ))

∣∣∣ ,
where λ1(A) and λn(A) denote the complex eigenvalues of A with highest and
lowest modulus respectively.

Remark 1.4. Since the eigenvalues of matrices in SO0(2, n+ 1) ⊂ SL(n+ 3,R) are
preserved by the involution A 7→ A−1, the above definition simplifies to

Lρ(γ) = log |λ1(γ)|

for representations into SO0(2, n+ 1).
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The length spectrum of a representation captures many of its algebraic, geometric
and dynamical properties. Several results suggest that the length spectra of Hitchin
and maximal representations are somehow always “bigger” than that of a Fuchsian
representation. The first of these results deals with the “average behavior” of the
length spectrum.

Definition 1.5. Let ρ be a representation of Γ into SL(n,R). The entropy of ρ is
the number

h(ρ) = lim sup
R→+∞

1

R
log ]{γ ∈ [Γ] | Lρ(γ) ≤ R} .

Theorem 1.6 (Potrie–Sambarino [PS14]). If ρ : Γ→ SL(n,R) is a Hitchin repre-
sentation, then

h(ρ) ≤ 2

n− 1
,

with equality if and only if ρ is conjugate to mirr ◦ j, where j : Γ → SL(2,R)
is a Fuchsian representation and mirr : SL(2,R) → SL(n,R) is the irreducible
representation.

Another “geometric control” on Hitchin representations is a generalization of
the classical collar lemma for Fuchsian representations. It roughly says that, if γ
and η are two essentially intersecting curves on Σ, then Lρ(γ) and Lρ(η) cannot
both be small. Such a collar lemma was obtained by Lee and Zhang for Hitchin
representations into SL(n,R) [LZ14] and by Burger and Pozzetti [BP15] for maximal
representations into Sp(2n,R). More precisely, they prove:

Theorem 1.7. There exists a constant C such that, for any γ and η in [Γ] repre-
sented by essentially intersecting curves on Σ and for any Hitchin (resp. maximal)
representation ρ of Γ into SL(n,R) (resp. Sp(2n,R)), one has(

eLρ(γ) − 1
)
·
(
eLρ(η) − 1

)
≥ C .

Motivated by a question of Zhang, the second author proved a stronger statement
for Hitchin representations into SL(3,R) which implies both results above:

Theorem 1.8 (Tholozan, [Tho15]). If ρ : Γ→ SL(3,R) is a Hitchin representation,
then there exists a Fuchsian representation j : Γ→ SL(2,R) such that

Lρ ≥ Lmirr◦j .

We will prove a similar statement for maximal representations into SO0(2, n+1).
A maximal representation ρ : Γ→ SO0(2, n+ 1) is said to be in the Fuchsian locus
if ρ(Γ) preserves a copy of R2,1 in R2,n+1 (see Definition 2.7).

Theorem 4.
Let Γ be the fundamental group of a closed oriented surface Σ of genus at least two.
If ρ : Γ → SO0(2, n + 1) is a maximal representation (n ≥ 0), then either ρ is in
the Fuchsian locus, or there exists a Fuchsian representation j : Γ→ SO0(2, 1) and
a λ > 1 such that

Lρ ≥ λLj .

As a direct consequence of the fact that Fuchsian representations into SO0(2, 1)
have entropy 1, we obtain the following:
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Corollary 5.
Let Γ be the fundamental group of a closed oriented surface Σ of genus at least two.
If ρ : Γ→ SO0(2, n+ 1) is a maximal representation (n ≥ 0), then the entropy h(ρ)
satisfies

h(ρ) ≤ 1

with equality if and only if ρ is in the Fuchsian locus.

As a direct consequence of Theorem 4 and Keen’s collar lemma [Kee74], we can
also deduce a sharp collar lemma for maximal representations into SO0(2, n+ 1):

Corollary 6.
Let Γ be the fundamental group of a closed oriented surface Σ of genus at least two
and ρ : Γ→ SO0(2, n+1) be a maximal representation. If γ and η are two elements
in [Γ] represented by essentially intersecting curves on Σ, then

sinh

(
Lρ(γ)

2

)
· sinh

(
Lρ(η)

2

)
> 1 .

Labourie’s conjecture for maximal representations in rank 2. A drawback
of non-abelian Hodge theory is that it parameterizes representations of a surface
group in a way that depends on the choice of a complex structure on the surface. In
particular, such parameterizations do not have a natural action of the mapping class
group of Σ. One would overcome this issue by finding a canonical way to associate
to a given surface group representation a complex structure on the surface. To this
intent, Labourie [Lab08] suggested the following approach.

Let T (Σ) denote the Teichmüller space of marked complex structures on Σ.
For each reductive representation ρ of Γ into a semi-simple Lie group G, one can
associate a functional on T (Σ) called the energy functional.

Definition 1.9. The energy functional Eρ is the function that associates to a
complex structure J on Σ the energy of the ρ-equivariant harmonic map from
(Σ̃, J) to the Riemannian symmetric space G/K.

The existence of such an equivariant harmonic map was proven by Corlette
[Cor88]. By a theorem of Sacks-Uhlenbeck and Schoen-Yau [SU77, SY79], J is a
critical point of Eρ if and only if the ρ-equivariant harmonic map from (Σ̃, J) to
G/K is weakly conformal or, equivalently, if its image is a branched minimal surface
in G/K. Labourie showed in [Lab08] that if the representation ρ is Anosov, then
its energy functional is proper, and thus admits a critical point. He conjectured
that, for Hitchin representations, this critical point is unique.

Conjecture (Labourie). Let Γ be the fundamental group of a closed oriented sur-
face Σ of genus at least two. If ρ is a Hitchin representation of Γ into a real split
Lie group G, then there is a unique complex structure J ∈ T (Σ) on Σ such that the
ρ-equivariant harmonic map from (Σ̃, J) to G/K is weakly conformal.

Labourie’s conjecture was proven independently by Loftin [Lof01] and Labourie
[Lab07] for G = SL(3,R), and then recently by Labourie [Lab17] for other split
real Lie groups of rank 2 (namely, PSp(4,R) and G2). Using the same strategy as
Labourie, this was generalized by Alessandrini and the first author [Col16b, AC17]
to all maximal representations into PSp(4,R). Here we give a new proof of their
result and extend it to any Hermitian Lie group of rank 2.
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Theorem 7.
Let Γ be the fundamental group of a closed oriented surface Σ of genus at least two.
If ρ is a maximal representation of Γ into a Hermitian Lie group G of rank 2, then
there is a unique complex structure J ∈ T (Σ) such that the ρ-equivariant harmonic
map from (Σ̃, J) to G/K is conformal. Moreover, this conformal harmonic map is
an embedding.

Remark 1.10. Theorem 7 reduces to a theorem concerning maximal representa-
tions into SO0(2, n). Indeed, the Hermitian Lie groups of rank 2 are (up to a
cover): PU(1, n)×PU(1, n), PSp(4,R), PU(2, n) and SO0(2, n) (n ≥ 5). By [Tol89],
maximal representations into PU(1, n)×PU(1, n) are conjugate to maximal repre-
sentations into P(U(1, 1)×U(n−1))×P(U(1, 1)×U(n−1)). By [BIW10], maximal
representations into PU(2, n) are all conjugate to maximal representations into
P(U(2, 2) × U(n − 2)) . Finally, PU(1, 1) × PU(1, 1) is isomorphic to PSO0(2, 2),
PSp(4,R) is isomorphic to SO0(2, 3) and PU(2, 2) is isomorphic to PSO0(2, 4).

Note that Labourie’s conjecture does not hold for quasi-Fuchsian representations.
Indeed, Huang and Wang [HW15] constructed quasi-Fuchsian manifolds contain-
ing arbitrarily many minimal surfaces. The conjecture seems to be related to the
property of lying in a connected component of Anosov representations.

Maximal surfaces in H2,n and strategy of the proof. Let H2,n be the space
of negative definite lines in R2,n+1. The space H2,n is an open domain in RPn+2

on which SO0(2, n + 1) acts transitively, preserving a pseudo-Riemannian metric
of signature (2, n) with constant sectional curvature −1. The boundary of H2,n in
RPn+2 is the space Ein1,n. The cornerstone of all the above results will be the
following theorem:

Theorem 8.
Let Γ be the fundamental group of a closed oriented surface Σ of genus at least two.
If ρ : Γ → SO0(2, n + 1) is a maximal representation, then there exists a unique
ρ-equivariant maximal space-like embedding of the universal cover of Σ into H2,n.

This theorem generalizes a well-known result of existence of maximal surfaces in
some anti-de Sitter 3-manifolds. More precisely, for n = 1, maximal representations
are exactly the holonomies of globally hyperbolic Cauchy-compact anti-de Sitter 3-
manifolds (see [Mes07]). In this particular case, our theorem is due to Barbot,
Béguin and Zeghib [BBZ03] (see also [Tou16] for the case with cone singularities).

The existence part of Theorem 8 will be proven in Section 3 using Higgs bundle
theory. More precisely, we will see that, given a maximal representation ρ : Γ →
SO0(2, n + 1), any critical point of the energy functional Eρ gives rise to a ρ-
equivariant maximal space-like embedding of Σ̃ with the same conformal structure.
The uniqueness part of Theorem 8 will then directly imply Theorem 7. Our proof
will use the pseudo-Riemannian geometry of H2,n in a manner similar to [BS10].
Note that in a recent paper [DGK17], Danciger, Guéritaud and Kassel also use
the geometry of the pseudo-hyperbolic space to understand special properties of
Anosov representations.

We show in Subsection 3.4 that the ρ-equivariant minimal surface in the Rie-
mannian symmetric space is the Gauss map of the maximal surface in H2,n. In the
case n = 1, this interpretation recovers the equivalence between the existence of a
unique maximal surface in globally hyperbolic anti-de Sitter 3-manifolds and the
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result of Schoen [Sch93] giving the existence of a unique minimal Lagrangian dif-
feomorphism isotopic to the identity between hyperbolic surfaces (the equivalence
was proved in [KS07]).

Now, to each negative definite line x ∈ H2,n, one can associate a copy of
Pho(R2,n) ⊂ Pho(R2,n+1) defined as the set of photons contained in x⊥. Moreover,
the copies of Pho(R2,n) associated to such lines x and y are disjoint if and only if
x and y are joined by a space-like geodesic. This remark allows us to construct a
Pho(R2,n+1) structure on a fiber bundle over Σ from the data of any ρ-equivariant
space-like embedding of Σ̃, and as a result, prove Theorem 1.

The Ein1,2-structures associated to Hitchin representations in SO0(2, 3) from
Theorem 3 are constructed from the unique maximal space-like surface of Theorem
8 as follows. To each unit tangent vector v of the maximal space-like ρ-equivariant
embedding of Σ̃ in H2,2, one can associate a point in Ein1,2 = ∂∞H2,2 by “following
the geodesic determined by v to infinity”. In this way, one obtains a ρ-equivariant
map from T 1Σ̃ to Ein1,2. Using a maximum principle involving the components
of the solution to Higgs bundle equations, we will prove that this map is a local
diffeomorphism. Note that this is specific to Hitchin representations and is not true
for other maximal representations.

Finally, to prove Theorem 4, we introduce the length spectrum of the maximal
ρ-equivariant embedding as an intermediate comparison. On the one hand, this
length spectrum is larger than the length spectrum of the conformal metric of
curvature −1 on the maximal surface, and on the other hand, it is less than the
length spectrum of the representation ρ. This should be compared to [DT16] where
Deroin and the second author prove that for any representation ρ into the isometry
group of Hn, there exists a Fuchsian representation j such that Lj ≥ Lρ. Here,
both inequalities are reversed because of the pseudo-Riemannian geometry on H2,n.

Acknowledgments. When we started this project, Olivier Guichard and Anna
Wienhard very kindly shared their working notes on Einstein structures associated
to Hitchin representations with us. Olivier Guichard additionally read carefully a
previous version of this paper and sent us numerous remarks. For this we are very
grateful.

The authors gratefully acknowledge support from the NSF grants DMS-1107452,
1107263 and 1107367 “RNMS: GEometric structures And Representation varieties”
(the GEAR Network). N. Tholozan’s research is partially supported by the ANR
project : DynGeo. B. Collier’s research is supported by the National Science Foun-
dation under Award No. 1604263.

2. Maximal representations into SO0(2, n+ 1)

For the rest of the paper, Σ will be a closed surface of genus g ≥ 2. We de-
note by Γ its fundamental group and by Σ̃ its universal cover. Recall that the
group Γ is Gromov hyperbolic and that its boundary at infinity, denoted by ∂∞Γ,
is homeomorphic to a circle.

2.1. The Toledo invariant. Let R2,n+1 denote the space Rn+3 endowed with the
quadratic form

q : (x1, . . . , xn+3) 7→ x2
1 + x2

2 − x2
3 − . . .− x2

n+3 .
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The Lie group SO0(2, n+ 1) is the identity component of the group of linear trans-
formations of R2,n+1 preserving q. Its subgroup SO(2) × SO(n + 1) is a maximal
compact subgroup.

To a representation ρ : Γ→ SO0(2, n+1), one can associate a principal SO0(2, n+

1)-bundle Pρ whose total space is the quotient of Σ̃ × SO0(2, n + 1) by the action
of Γ by deck transformations:

γ · (x, y) = (x · γ−1, ρ(γ)y) .

Since the quotient of SO0(2, n+1) by a maximal compact subgroup is contractible,
this principal bundle admits a reduction of structure group to a principal SO(2)×
SO(n+1)-bundle Bρ which is unique up to gauge equivalence. Finally, the quotient
of Bρ by the right action of SO(n+ 1) gives a principal SO(2)-bundle Mρ on Σ.

Definition 2.1. The Toledo invariant τ(ρ) of the representation ρ is the Euler
class of the SO(2)-bundle Mρ.

The Toledo invariant is locally constant and invariant by conjugation. It thus
defines a map

τ : Rep(Γ,SO0(2, n+ 1)) // Z ,

where Rep(Γ,SO0(2, n + 1)) denotes the set of conjugacy class of representations
of Γ into SO0(2, n + 1)). It is proven in [DT87] that the Toledo invariant satisfies
the Milnor–Wood inequality :

Proposition 2.2. For each representation ρ : Γ → SO0(2, n + 1) the Toledo in-
variant satisfies

|τ(ρ)| ≤ 2g − 2 .

This leads to the following definition:

Definition 2.3. A representation ρ : Γ→ SO0(2, n+1) ismaximal if |τ(ρ)| = 2g−2.

2.2. Maximal representations are Anosov. The Toledo invariant and the no-
tion of maximal representation can be defined more generally for representations of
Γ into Hermitian Lie groups. In [BIW10], Burger, Iozzi and Wienhard study these
representations. They prove in particular that for any Hermitian Lie group G of
tube type, there exist maximal representations of Γ into G that have Zariski dense
image. This applies in particular to maximal representations in SO0(2, n+ 1).

In that same paper, they exhibit a very nice geometric property of maximal
representations that was reinterpreted in [BILW05] as the Anosov property intro-
duced independently by Labourie in [Lab06]. Here we describe one of the main
consequences of their work in our setting.

Let Ein1,n ⊂ RPn+2 denote the space of isotropic lines in R2,n+1. The group
SO0(2, n + 1) acts transitively on Ein1,n and preserves the conformal class of a
pseudo-Riemannian metric of signature (1, n). We will say that three isotropic
lines [e1], [e2] and [e3] in Ein1,n are in a space-like configuration if the quadratic
form q restricted to the vector space spanned by e1, e2 and e3 has signature (2, 1).

Theorem 2.4 (Burger–Iozzi–Labourie–Wienhard, [BILW05]). If ρ : Γ→ SO0(2, n+
1) is a maximal representation, then there is a unique ρ-equivariant continuous em-
bedding

ξ : ∂∞Γ→ Ein1,n .
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Moreover, the image of ξ is a space-like curve, meaning that the images of any
three distinct points in ∂∞Γ are in a space-like configuration.

Note that the result of Burger, Iozzi, Labourie and Wienhard does not concern
directly the case G = SO0(2, n+1), but G = SU(p, q) and G = Sp(2n,R). However,
as proved by Pozzetti and Hamlet [HP14], there exists a tight homomorphism ι :
SO0(2, n + 1) → Sp(2m,R) for some m ∈ N. This property is sufficient to extend
the result to the case of SO0(2, n+ 1).

The Anosov property implies that maximal representations are loxodromic. In
particular, the limit curve ξ can be reconstructed from the attracting and repelling
eigenvectors of ρ(γ) for γ ∈ Γ. More precisely, we have the following :

Corollary 2.5. For every γ ∈ Γ, if γ+ and γ− denote the attracting and repelling
fixed points of γ in ∂∞Γ, then, for λ > 1, ξ(γ+) and ξ(γ−) are the eigen-directions of
ρ(γ) for eigenvalues λ and λ−1 respectively. Moreover, the 2-plane spanned ξ(γ+)
and ξ(γ−) is non-degenerate with respect to q, and the restriction of ρ(γ) to its
orthogonal has spectral radius strictly less than λ.

For n = 0, maximal representations into SO0(2, 1) correspond to Fuchsian rep-
resentations [Gol88b]. The isometric inclusion

R2,1 −→ R2,n+1

(x1, x2, x3) 7−→ (x1, x2, x3, 0, · · · , 0)

defines an inclusion of SO0(2, 1) ↪→ SO0(2, n + 1) which preserves the Toledo in-
variant. In particular, given a Fuchsian representation ρFuch : Γ → SO0(2, 1), the
SO0(2, n+ 1)-representation j ◦ ρ is maximal.

If α : Γ → O(n) is an orthogonal representation, let det(α) : Γ → O(1) be the
determinant representation. One can construct the representation

ρFuch ⊗ det(α) : Γ→ O(2, 1),

obtained by twisting ρFuch by det(α). More precisely, ρFuch⊗det(α) takes value in
the index two subgroup of O(2, 1) preserving the orientation of space-like directions.

Proposition 2.6. The maximal representation

ρ = (ρFuch ⊗ det(α))⊕ α : Γ→ O(2, n+ 1)

takes value in SO0(2, n+ 1).

Proof. Because ρFuch takes value in SO0(2, 1), one can deform ρFuch(γ) to the
identity in SO0(2, 1) for any γ ∈ Γ. In particular, ρ(γ) can be deformed to an
element in SO(2)× SO(n+ 1) ⊂ SO0(2, n+ 1). �

Definition 2.7. A maximal representation ρ : Γ→ SO0(2, n+ 1) lies in the Fuch-
sian locus if it preserves a three dimensional linear subspace of R2,n+1 in restriction
to which q has signature (2, 1); equivalently,

ρ =
(
ρFuch ⊗ det(α)

)
⊕ α

for ρFuch : Γ→ SO0(2, 1) a Fuchsian representation and α : Γ→ O(n).
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2.3. Harmonic metrics and Higgs bundles. We now recall the non-abelian
Hodge correspondence between representations of Γ into SO0(2, n+1) and SO0(2, n+
1)-Higgs bundles. This correspondence holds for any real reductive Lie group G,
but we will restrict the discussion to our group of interest.

When the surface Σ is endowed with a complex structure, we will denote the
associate Riemann surface by X. The canonical bundle of X will be denoted by
K and the trivial bundle will be denoted by O. We also denote the Riemannian
symmetric space of SO0(2, n+ 1) by X, namely

X = SO0(2, n+ 1)/(SO(2)× SO(n+ 1)).

We start by recalling the notion of a harmonic metric.

Definition 2.8. Let ρ : Γ → SO0(2, n + 1) be a representation and let Pρ be the
associated flat SO0(2, n + 1)-bundle. A metric on Pρ is a reduction of structure
group to SO(2)× SO(n+ 1). Equivalently, a metric is a ρ-equivariant map

hρ : Σ̃ // X .

The differential dhρ of a metric hρ is a section of T ∗Σ̃⊗ h∗ρTX. Given a metric
g on Σ, one can define the norm ‖dhρ‖ of dhρ which, by equivariance of hρ, is
invariant under the action of Γ on Σ̃ by deck transformations. In particular, ‖dhρ‖
descends to a function on Σ. The energy of hρ is the L2-norm of dhρ, namely:

E(hρ) =

∫
Σ

‖dhρ‖2dvg.

Note that the energy of hρ depends only on the conformal class of the metric g,
and so, only on the Riemann surface structure X associated to g.

Definition 2.9. A metric hρ : X̃ → X on Pρ is harmonic if it is a critical point of
the energy functional.

The complex structure on X and the Levi-Civita connection on X induce a
holomorphic structure ∇0,1 on the bundle

(
T ∗X ⊗ h∗ρTX

)
⊗ C. The following is

classical (see [HW08, p. 425]):

Proposition 2.10. A metric hρ : X̃ → X is harmonic if and only if the (1, 0) part
∂hρ of dhρ is holomorphic, that is

∇0,1∂hρ = 0.

A representation ρ : Γ → SO0(2, n + 1) is completely reducible if any ρ(Γ)-
invariant subspace of Rn+3 has a ρ(Γ)-invariant complement. For completely re-
ducible representations, we have the following theorem.

Theorem 2.11 (Corlette [Cor88]). A representation ρ : Γ → SO0(2, n + 1) is
completely reducible if and only if, for each Riemann surface structure X on S,
there exists a harmonic metric hρ : X̃ → X. Moreover, a harmonic metric is unique
up to the action of the centralizer of ρ.

Remark 2.12. In [BIW10], it is shown that all maximal representations are com-
pletely reducible and that the centralizer of a maximal representation in compact.
Thus, for maximal representations there exists a unique harmonic metric.
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For a completely reducible representation ρ, the energy of the harmonic metric
hρ defines a function on the Teichmüller space T (Σ) of Σ

(1) Eρ : T (Σ) // R≥0

X � // E(hρ)

.

The critical points of the energy are determined by the following.

Proposition 2.13 (Sacks-Uhlenbeck [SU77], Schoen-Yau [SY79]). A harmonic
metric hρ is a critical point of Eρ if and only if it is weakly conformal, i.e. tr(∂hρ⊗
∂hρ) = 0. This is equivalent to hρ being a branched minimal immersion.

For Anosov representations, Labourie has shown that the energy function (1) is
smooth and proper, and so, has a critical point. As a corollary we have:

Proposition 2.14 (Labourie [Lab08]). For each maximal representation there ex-
ists a Riemann surface structure on Σ for which the harmonic metric is weakly
conformal.

We now recall the notion of a Higgs bundle on a Riemann surface X.

Definition 2.15. An SL(n,C)-Higgs bundle on X is a pair (E ,Φ) where E is a
rank n holomorphic vector bundle with ΛnE = O and Φ ∈ H0(End(E) ⊗ K) is a
holomorphic endomorphism of E twisted by K with tr(Φ) = 0.

Higgs bundles were originally defined by Hitchin [Hit87] for the group SL(2,C)
and generalized by Simpson [Sim88] for any complex semi-simple Lie group. More
generally, Higgs bundles can be defined for real reductive Lie groups. For the group
SO0(2, n+ 1) the appropriate vector bundle definition is the following.

Definition 2.16. An SO0(2, n + 1)-Higgs bundle over a Riemann surface X is a
tuple (U , qU ,V, qV , η) where

• U and V are respectively rank 2 and rank (n+1) holomorphic vector bundles
on X with trivial determinant and trivializations Λ2U ∼= O, Λn+1V ∼= O.

• qU and qV are non-degenerate holomorphic sections of Sym2(U∗) and Sym2(V∗),
• η is a holomorphic section of Hom(U ,V)⊗K.

The non-degenerate sections qU and qV define holomorphic isomorphisms

qU : U → U∗ and qV : V → V∗ .

Given an SO0(2, n+ 1)-Higgs bundle (U , qU ,V, qV , η), we get an SL(n+ 3,C)-Higgs
bundle (E ,Φ) by setting E = U ⊕ V and

(2) Φ =

(
0 η†

η 0

)
: U ⊕ V −→ (U ⊕ V)⊗K.

where η† = q−1
U ◦ ηT ◦ qV ∈ H0(Hom(V,U)⊗K). Note that

ΦT
(
qU

−qV

)
+

(
qU

−qV

)
Φ = 0.

Appropriate notions of poly-stability exist for G-Higgs bundles [GPGMiR09].
However, for our considerations, the following definition will suffice.
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Definition 2.17. An SL(n,C)-Higgs bundle (E ,Φ) is stable if for all sub-bundles
F ⊂ E with Φ(F) ⊂ F ⊗ K we have deg(F) < 0; (E ,Φ) is called poly-stable if it
is direct sum of stable SL(nj ,C)-Higgs bundles. An SO0(2, n + 1)-Higgs bundle is
poly-stable if and only if the SL(n+ 3,C)-Higgs bundle (2) is poly-stable.

From Higgs bundles to representations. Poly-stability is equivalent to exis-
tence of a Hermitian metric solving certain gauge theoretic equations which we refer
to as the Higgs bundle equations. This was proven by Hitchin [Hit87] for SL(2,C)
and Simpson [Sim88] for semi-simple complex Lie groups, see [GPGMiR09] for the
statement for real reductive groups.

We say that a Hermitian metric h on E is adapted to the C-bilinear symmetric
form q = qU ⊕ −qV if h(u, v) = q(u, λ(v)) where λ : E → E is an anti-linear
involution. In such a case, we say that λ is the involution associated to the metric
h.

Theorem 2.18. An SO0(2, n + 1)-Higgs bundle (U , qU ,V, qV , η) is poly-stable if
and only if there exist adapted Hermitian metrics hU and hV on U and V such that

(3)
{
FhU + η† ∧ (η†)∗h + η∗h ∧ η = 0
FhV + η ∧ η∗h + (η†)∗h ∧ η† = 0

Here FhU and FhV denote the curvature of the Chern connections of hU and hV and
η∗h denotes the Hermitian adjoint of η, i.e. hV(u, η(v)) = hU (η∗h(u), v).

If (hU , hV) solves the Higgs bundle equations (3), then the metric h = hU ⊕ hV
on E = U ⊕ V solves the SL(n+ 3,C)-Higgs bundle equations

Fh + [Φ,Φ∗h] = 0.

Given a solution (hU , hV) to the Higgs bundle equations, the connection

(4) ∇ =

(
∇hU

∇hV

)
+

(
0 η†

η 0

)
+

(
0 η∗h

(η†)∗h 0

)
is a flat connection on E = U ⊕ V. Moreover, if λU and λV are the associated
involutions, λU ⊕ λV is preserved by ∇.

Denote the associated real bundle by E∇. The orthogonal structure qU ⊕ −qV
restricts to a ∇-parallel signature (2, n+ 1) metric gU ⊕ gV on E∇. The holonomy
of ∇ gives a representation ρ : Γ→ SO0(2, n+ 1) which is completely reducible.

From representations to Higgs bundles. Let (Eρ,∇, g) be the flat rank (n+3)
vector bundle with signature (2, n + 1) metric g and flat connection ∇ associated
to a representation ρ : Γ→ SO0(2, n+ 1). A metric on Eρ,

hρ : Σ̃ // X

is equivalent to a splitting Eρ = U ⊕ V where U is a rank 2 orthogonal bundle
with gU = g|U positive definite and V is a rank (n + 1)-bundle with −gV = −g|V
positive definite. Moreover, the flat connection ∇ decomposes as

(5) ∇ =

(
∇U

∇V

)
+

(
Ψ†

Ψ

)
where ∇U and ∇V are connections on U and V such that gU and gV are covariantly
constant, Ψ is a one form valued in the bundle Hom(U, V ) and Ψ† = g−1

U ΨT gV .
The one form (Ψ + Ψ†) ∈ Ω1(Σ,Hom(U, V )⊕ Hom(V,U)) is identified with the

differential of the metric hρ. If X is a Riemann surface structure on Σ, then the
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Hermitian extension hU ⊕ hV of gU ⊕−gV to the complexification of Eρ defines a
Hermitian metric. The complex linear extensions of ∇U ,∇V ,Ψ and Ψ† all decom-
pose into (1, 0) and (0, 1) parts, and ∇0,1

U and ∇0,1
V define holomorphic structures.

Writing ∇0,1
U,V for the (0, 1)-part of the connection on Hom(U, V ) induced by the

connections ∇U and ∇V , Proposition 2.10 reads:

Proposition 2.19. A metric hρ : X̃ → X is harmonic if and only if ∇0,1
U,V Ψ1,0 = 0,

(or equivalently ∇0,1
V,U (Ψ†)1,0).

Given a harmonic metric hρ, the Hermitian adjoints of Ψ1,0 and (Ψ†)0,1 are given
by (Ψ1,0)∗ = (Ψ†)0,1 and (Ψ†)1,0 = (Ψ0,1)∗. With respect to a harmonic metric,
the flatness equations F∇ = 0 decompose as

(6)


F∇U + Ψ1,0 ∧ (Ψ1,0)∗ + ((Ψ†)1,0)∗ ∧ (Ψ†)1,0 = 0
F∇V + (Ψ†)1,0 ∧ ((Ψ†)1,0)∗ + (Ψ1,0)∗ ∧Ψ1,0 = 0

∇0,1
U,V Ψ1,0 = 0

.

Note that setting Ψ1,0 = η, the Higgs bundle equations (3) are the same as
the decomposition of the flatness equations (6) with respect to a harmonic metric.
Thus, if U and V are the holomorphic bundles (U ⊗ C,∇0,1

U ) and (V ⊗ C,∇0,1
V ),

then (U , qU ,V, qV ,Ψ1,0) is a poly-stable SO0(2, n+1)-Higgs bundle, where qU is the
C-linear extension of gU to U ⊗ C (similarly for qV).

Proposition 2.20. Let ρ : Γ → SO0(2, n + 1) be a completely reducible repre-
sentation and X be a Riemann surface structure on Σ. If (U , qU ,V, qV , η) is the
Higgs bundle associated to ρ, then the harmonic metric hρ is a branched minimal
immersion if and only if tr(η ⊗ η†) = 0.

Proof. The derivative of the harmonic metric is identified with the 1-form Ψ + Ψ†

from (5). By Proposition 2.13, hρ is a branched minimal immersion if and only if

tr

((
0 (Ψ†)0,1

Ψ0,1 0

)2
)

= 0.

This is equivalent to tr(η ⊗ η†) = 0. �

Definition 2.21. An SO0(2, n + 1)-Higgs bundle (U , qU ,V, qV , η) will be called
conformal if tr(η ⊗ η†) = 0.

2.4. Maximal Higgs bundle parameterizations. We now describe the Higgs
bundles which give rise to maximal SO0(2, n+ 1)-representations.

Proposition 2.22. The isomorphism class of a SO0(2, n+1)-Higgs bundle (U , qU ,V, qV , η)
is determined by the data (L,V, qV , β, γ) where L is a holomorphic line bundle on

X, β ∈ H0(L⊗V⊗K) and γ ∈ H0(L−1⊗V⊗K). Here U = L⊕L−1, qU =

(
0 1
1 0

)
and η = (γ, β) : L⊕L−1 → V⊗K. Moreover, if (U , qU ,V, qV , η) is poly-stable, then
the Toledo invariant of the corresponding representation is the degree of L.

Proof. The group SO(2,C) is isomorphic to the set of 2 × 2 matrices A such that

AT
(

0 1
1 0

)
A =

(
0 1
1 0

)
. Since the bundle (U , qU ) is the associated bundle of a
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holomorphic principal SO(2,C)-bundle, up to isomorphism we have

(U , qU ) =

(
L ⊕ L−1,

(
0 1
1 0

)
: L ⊕ L−1 → (L ⊕ L−1)∗

)
.

With respect to the splitting U = L⊕L−1, the holomorphic section η ∈ Hom(U ,V)⊗
K decomposes as β ⊕ γ where β ∈ Hom(L ⊗ V ⊗ K) and γ ∈ Hom(L−1 ⊗ V ⊗ K).
Since, the degree of L is the degree of the SO(2)-bundle whose complexification is
U , the Toledo invariant of the associated representation is the degree of L. �

Remark 2.23. The SL(n+ 3,C)-Higgs bundle (E ,Φ) associated to (L,V, qV , β, γ) is
given by E = L ⊕ L−1 ⊕ V and

(7) Φ =

0 0 β†

0 0 γ†
γ β 0

 : E → E ⊗ K.

The Milnor-Wood inequality can be seen directly for poly-stable Higgs bundles.

Proposition 2.24. If (L,V, qV , β, γ) is a poly-stable SO0(2, n + 1)-Higgs bundle,
then deg(L) ≤ 2g − 2. Furthermore, if deg(L) = 2g − 2, then

• V admits a qV -orthogonal decomposition V = I ⊕ V0 where V0 is a holo-
morphic rank n bundle and I = ΛnV0 satisfies I2 = O.

• L ∼= IK
• γ ∼=

(
1
0

)
: IK → IK ⊕ V0 ⊗ K and β =

(
q2

β0

)
: K−1I → IK ⊕ V0 ⊗ K

where q2 ∈ H0(K2) and β0 ∈ H0(K ⊗ I ⊗ V0).

Proof. The poly-stable SL(n+3,C) Higgs bundle (E ,Φ) associated to (L,V, qV , β, γ)
has E = L ⊕ L−1 ⊕ V and Φ is given by (7). If deg(L) > 0, then by poly-stability
γ 6= 0. If the image of γ is isotropic, then we have a sequence

0 // LK−1 γ // ker(γ†) // V
γ† // L−1K // 0 .

Since deg(ker(γ†)) = deg(L)− (2g− 2) and L⊕ ker(γ†) is an invariant sub-bundle,
we have deg(L) ≤ g − 1. Thus, for deg(L) > g − 1 the composition γ ◦ γ† is a
non-zero element of H0((L−1K)2), and we conclude deg(L) ≤ 2g − 2.

If deg(L) = 2g−2, then (L−1K)2 = O and γ is nowhere vanishing. Set I = LK−1,
then L = IK and I defines an orthogonal line sub-bundle of V. Taking the qV -
orthogonal complement of I gives a holomorphic decomposition V = I ⊕ (I)⊥.
Since Λn+1V = O, we conclude V = I ⊕ V0 where I = ΛnV0. Since the image of

γ is identified with I, we can take γ ∼=
(

1
0

)
: IK → IK ⊕ V0 ⊗ K. Finally, the

holomorphic section β of Hom(IK−1, I ⊕ V0)⊗K decomposes as

β = q2 ⊕ β0

where q2 is a holomorphic quadratic differential and β0 ∈ H0(V0 ⊗ IK) �

Remark 2.25. Higgs bundles with deg(L) = 2g − 2 will be called maximal Higgs
bundles. They are determined by tuples (V0, qV0 , β0, q2) from Proposition 2.24.

Proposition 2.26. If ρ : Repmax(Γ,SO0(2, n + 1)) is a maximal representation,
X is a Riemann surface structure on Σ and the Higgs bundle corresponding to
ρ is defined by the data (V0, qV0 , β0, q2), then the harmonic metric is a minimal
immersion if and only if the holomorphic quadratic differential q2 vanishes.
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Proof. By Proposition 2.20, the harmonic metric associated to a poly-stable Higgs
bundle (U , qU ,V, qV , η) is a branched minimal immersion if and only if tr(η⊗η†) = 0.
For a maximal Higgs bundle determined by (V0, qV0 , β0, q2)

η =

(
1 0
q2 β0

)
: IK⊕IK−1 → IK⊕V0K and η† =

(
q2 β†0
1 0

)
: I⊕V0 → IK2⊕I.

A computation shows tr(η⊗η†) = 2q2, thus, by Proposition 2.20, the harmonic map
is a branched minimal immersion if and only if q2 = 0. Finally, η + η† is nowhere
vanishing, hence the branched minimal immersion is branch point free. �

Given a maximal representation ρ ∈ Rep(Γ,SO0(2, n+ 1)), by Proposition 2.14,
we can always find a Riemann surface structure in which the corresponding Higgs
bundle is a maximal conformal Higgs bundle. A maximal conformal Higgs bundle
is determined by (V0, qV0 , β0):

(U , qU ,V, qV , η) =

(
IK ⊕ IK−1,

(
0 1
1 0

)
, I ⊕ V0,

(
1 0
0 qV0

)
,

(
1 0
0 β0

))
.

The associated SL(n+ 3,C)-Higgs bundle will be represented schematically by

IK 1 // I 1 // IK−1

β0ww⊕V0
β†0

ff

where the arrows represent the Higgs field and we omit the tensor product by K.
Such a Higgs bundle is an example of a cyclic Higgs bundle.

Definition 2.27. An SL(n,C)-Higgs bundle (E ,Φ) is called cyclic of order k if
there is a holomorphic splitting E = E1⊕ . . .⊕Ek such that Φ maps Ei into Ei+1⊗K
(for i < k) and Ek to E1 ⊗K.

Proposition 2.28 (Simpson, [Sim09]). If the Higgs bundle (E,Φ) is cyclic of order
k, then the cyclic splitting of Φ is orthogonal with respect to the Hermitian metric
which solves the Higgs equations FH + [Φ,Φ∗] = 0.

The symmetries of the solution metrics (3) and Proposition 2.28 give a further
simplification of the Higgs bundle equations for maximal conformal SO0(2, n+ 1)-
Higgs bundles.

Proposition 2.29. For a poly-stable maximal conformal SO0(2, n+1)-Higgs bundle
determined by (V0, qV0 , β0), if (hU , hV) solves the Higgs bundle equations (3), then

• hU =

(
hIK

h−1
IK

)
where hIK is a metric on IK and h−1

IK is the induced

metric on IK−1

• hV =

(
hI

hV0

)
where hI is a flat metric on I and hV0 is a metric on V0

adapted to qV0 .
Furthermore, the Higgs bundle equations (3) simplify as

(8)
{
FhIK + β†0 ∧ (β†0)∗h + 1∗h ∧ 1 = 0

FV0 + β0 ∧ β∗h0 + (β†0)∗h ∧ β†0 = 0
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Proof. Because hU is adapted to qU , hU =

(
hIK

h−1
IK

)
where hIK is a metric

on IK and h−1
IK is the induced metric on IK−1. The splitting of hV follows from

Proposition 2.28. The Higgs bundle equations (3) with η =

(
1 0
0 β0

)
and hU =

hIK ⊕ h−1
IK and hV = hI ⊕ hV0 simplify to

FhIK + β†0 ∧ (β†0)∗h + 1∗h ∧ 1 = 0
Fh−1
IK

+ 1 ∧ 1∗h + β∗h0 ∧ β0 = 0

FhI + 1 ∧ 1∗h + 1∗h ∧ 1 = 0

FV0 + β0 ∧ β∗h0 + (β†0)∗h ∧ β†0 = 0

Note that the first two equations are the same and the third equation implies the
metric hI is flat. �

For a maximal poly-stable conformal SO0(2, n+ 1)-Higgs bundle determined by
(V0, qV0 , β0), the associated flat bundle Eρ ⊂ (IK ⊕ IK−1 ⊕ I ⊕ V0) is the fixed
point locus of the associated anti-linear involution λ : E → E , that is the involution
defined by the equation h(u, v) = q(u, λ(v)).

In the splitting E = IK ⊕ IK−1 ⊕ I ⊕ V0, the C-bilinear form q is given by

q =


1

1
−1

−qV0

 .

By Proposition 2.29, the previous splitting is orthogonal with respect to the Her-
mitian metric solving the Higgs bundle equations. In particular, one easily checks
that the associated involution λ : IK ⊕ IK−1 ⊕ I ⊕ V0 → IK ⊕ IK−1 ⊕ I ⊕ V0 is
written

λ =


h−1
IK

hIK
−hI

−λV0

 ,

where hIK(u) is the anti-linear map defined by hIK(u).v = hIK(u, v).
Thus the flat bundle Eρ = U ⊕ V of a maximal representation decomposes

further. This decomposition will play an essential role in the rest of the paper.

Theorem 2.30. The flat bundle associated to a poly-stable maximal conformal
SO0(2, n+ 1)-Higgs bundle determined by (V0, qV0 , β0) decomposes as

Eρ = U ⊕ `⊕ V0

where U ⊂ U is a positive definite rank two sub-bundle, ` ⊂ I is a negative definite
line sub-bundle and V0 ⊂ V0 is a negative definite rank n bundle. In this splitting
the flat connection is given by

∇ =

 ∇hU 1 + 1∗h β†0 + β∗h0

1 + 1∗h ∇hI 0
β0 + (β†)∗h 0 ∇hV0


From now on we will only consider poly-stable maximal SO0(2, n + 1)-Higgs

bundles. For notational convenience, we will drop the subscript 0 and write the
decomposition of the flat bundle Eρ as Eρ = U ⊕ `⊕ V.
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2.5. Connected components of maximal representations. Given a maximal
SO0(2, n+ 1)-Higgs bundle

(9) IK 1 // I 1 // IK−1

βxx
⊕
Vβ†

ee ,

the Stiefel-Whitney classes sw1 ∈ H1(Σ,Z/2) and sw2 ∈ H2(Σ,Z/2) of V define
characteristic classes which help distinguish the connected components of maximal
Higgs bundles. Thus, the space of maximal representations decomposes as

Repmax(Γ,SO0(2, n+ 1)) =
⊔

sw1∈H1(Σ,Z/2)

sw2∈H2(Σ,Z/2)

Repmaxsw1,sw2
(Γ,SO0(2, n+ 1))

where Repmaxsw1,sw2
(Γ,SO0(2, n+ 1)) is the set of maximal representations such that

the Stiefel-Whitney classes of the bundle V are sw1 and sw2.
When n > 2, these characteristic classes distinguish the connected compo-

nents of maximal SO0(2, n + 1)-Higgs bundles. In other words each of the sets
Repmaxsw1,sw2

(Γ,SO0(2, n + 1)) is non-empty and connected [BGPG06]. Thus, for
n > 2, the space Repmax(Γ,SO0(2, n+ 1)) has 22g+1 connected components.

Proposition 2.31. For n > 2 each connected component of maximal SO0(2, n+1)-
representations contains a point in the Fuchsian locus from Definition 2.7.

Proof. Let ρFuch : Γ→ SO0(2, 1) be a Fuchsian representation and α : Γ→ O(n) be
an orthogonal representation. Consider the maximal SO0(2, n+ 1)-representation

ρ =
(
ρFuch ⊗ det(α)

)
⊕ α

in the Fuchsian locus. The associated conformal Higgs bundle is given by

IK 1 // I 1 // IK−1

⊕
V

,

where V is the flat orthogonal bundle associated to the representation α. �

The case of maximal SO0(2, 3)-representations is slightly different. Namely, when
the first Stiefel-Whitney class of V vanishes, the structure group of V reduces to
SO(2). In this case, V is isomorphic to N ⊕ N−1 for some line bundle N with
non-negative degree. Furthermore, the holomorphic section β decomposes as β =
(µ, ν) ∈ H0(N−1K2) ⊕H0(NK2). By stability, if deg(N ) ≥ 0, then µ 6= 0. Thus,
we have a bound 0 ≤ deg(N ) ≤ 4g − 4.

The Hitchin component is the connected component of the representation va-
riety Rep(Γ,SO0(2, 3)) containing the representations of the form ιirr ◦ ρ where
ρ : Γ → SO0(2, 1) is Fuchsian and ιirr : SO0(2, 1) → SO0(2, 3) is the unique (up
to conjugation) irreducible representation. This component is maximal and corre-
sponds to the case deg(N ) = 4g − 4, which implies N = K2.

Proposition 2.32. [BGPG06] The space of maximal SO0(2, 3)-representations de-
composes as⊔

sw1 6=0, sw2

Repmaxsw1,sw2
(Γ,SO0(2, 3)) t

⊔
0≤d≤4g−4

Repmaxd (Γ,SO0(2, 3)).
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Here the Higgs bundles corresponding to representations in Repmaxsw1,sw2
(Γ,SO0(2, 3))

are given by (9) with Stiefel-Whitney classes of V given by sw1 and sw2 and, for
representations in Repmaxd (Γ,SO0(2, 3)), the corresponding Higgs bundles have V =
N ⊕N−1 with deg(N ) = d. Moreover, each of the above spaces is connected.

Remark 2.33. The components Repmaxd (Γ,SO0(2, 3)) are the SO0(2, 3)-versions of
maximal Sp(4,R)-representations discovered by Gothen [Got01]. Hence, we will
call the 4g − 4 components

⊔
0<d≤4g−4

Repmaxd (Γ,SO0(2, 3)) Gothen components. In

particular, Hitchin representations are Gothen representations corresponding to
d = 4g − 4. The remaining components⊔

sw1 6=0, sw2

Repmaxsw1,sw2
(Γ,SO0(2, 3)) t Repmax0 (Γ,SO0(2, 3))

will be called reducible components. The name is justified by Proposition 2.34.

The Gothen components and the reducible components have important dif-
ferences. In particular, the Gothen components are smooth, and all representa-
tions in Gothen components that are not Hitchin representations are Zariski dense
[BGPG12, Col16a]. While all reducible components contain representations in the
Fuchsian locus. Thus we have:

Proposition 2.34. The reducible components of maximal SO0(2, 3)-representations
are the components containing the Fuchsian representations as defined in Definition
2.7).

3. Maximal space-like surfaces in H2,n

In this section, we look at the action of a maximal representation ρ : Γ →
SO0(2, n+ 1) on the pseudo-Riemannian symmetric space H2,n. We show that this
action preserves a unique maximal space-like surface, the Gauss map of which gives
a minimal surface in the Riemannian symmetric space X of SO0(2, n + 1). As a
corollary, we prove Labourie’s conjecture for maximal SO0(2, n+1) representations
(see Theorem 7 of the introduction).

3.1. The space H2,n. In this section, we recall without proofs some classical facts
about the pseudo-Riemannian symmetric spaces H2,n.

Definition 3.1. The space H2,n ⊂ RPn+3 is the set of lines in R2,n+1 in restriction
to which the quadratic form q is negative. The space Ĥ2,n is the set of vectors u
in R2,n+1 such that q(u) = −1.

The natural projection from Ĥ2,n toH2,n is a covering of degree 2. The restriction
of the quadratic form q induces a pseudo-Riemannian metric on H2,n of signature
(2, n) and sectional curvature −1. The group SO0(2, n+1) acts transitively on H2,n

preserving this pseudo-Riemannian metric.

Remark 3.2. The space H2,1 is a Lorentz manifold called the anti-de Sitter space of
dimension 3. Some of the results presented in this section generalize known results
for H2,1 (see [BS10]). Note however, that the Lie group SO0(2, 2) is isomorphic to
a two-to-one cover of PSL(2,R)× PSL(2,R), thus the case n = 1 is quite special.

Compactification. The space H2,n is compactified by the space of isotropic lines
in R2,n+1:
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Definition 3.3. The Einstein Universe Ein1,n ⊂ RPn+3 is the set of isotropic
lines in R2,n+1. The space Êin

1,n
is the quotient of the space of isotropic vectors

in R2,n+1 by the action of R>0 by homotheties.

The space Ein1,n has a natural conformal class of pseudo-Riemannian metrics
with signature (1, n) which is invariant by the action of SO0(2, n + 1). It is thus
the local model for conformally flat Lorentz manifolds.

Geodesics. The complete geodesics of H2,n are the intersections of H2,n with
projective planes. These geodesics fall into three categories:

• space-like geodesics are intersections of H2,n with projective planes of sig-
nature (1, 1),

• light-like geodesics are intersections of H2,n with projective planes of (de-
generate) signature (0, 1),

• time-like geodesics are intersections of H2,n with projective planes of sig-
nature (0, 2).

Let u and v be two vectors in R2,n+1 such that q(u) = q(v) = −1 and v 6= ±u.
Then the projections [u] and [v] of u and v in H2,n are joined by a unique geodesic,
which is the intersection of H2,n with the projective plane spanned by u and v. If
this geodesic is space-like, then one can define the space-like distance dH2,n([u], [v])
between [u] and [v] as the length of the geodesic segment joining them. Though
this function is not an actual distance, it will be useful later on.

Proposition 3.4. The points [u] and [v] are joined by a space-like geodesic if and
only if |q(u, v)| > 1. In that case, we have

dH2,n([u], [v]) = cosh−1 |q(u, v)| .

Warped product structure. It is sometimes very useful to picture Ĥ2,n as a
product of a H2 × Sn endowed with a "twisted" metric. To do so, consider an
orthogonal splitting R2,n+1 = R2,0 ⊕ R0,n+1.

Proposition 3.5. Let D be the disc of radius 1 in R2, and Sn the sphere of radius
1 in Rn+1.

• The map

F : D× Sn → Ĥ2,n

(u, v) 7→
(

2
1−‖u‖2u,

1+‖u‖2

1−‖u‖2 v
)

is a homeomorphism.
• We have

(10) F ∗gH2,n =
4

(1− ‖u‖2)2
gD ⊕−

(
1 + ‖u‖2

1− ‖u‖2

)2

gSn .

where gD is the flat metric dx2 + dy2 and gSn is the spherical metric of
curvature 1 on Sn.

• The map

∂∞F : ∂D× Sn → Êin
1,n

(u, v) 7→ (u, v)

is a homeomorphism that extends F continuously.
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3.2. Extremal surfaces. Here we recall some basic facts about extremal immer-
sions and refer to [Anc11, Chpater 1.3] for more details.

Consider a 2-dimensional oriented surface S and an n-dimensional manifold M
endowed with a metric g of signature (p, q), with p ≥ 2. An immersion ι : S ↪→M
gives an identification of the tangent bundle TS to S with a sub-bundle of the pull-
back bundle ι∗TM . This bundle is endowed with the pull-back metric ι∗g. The
immersion ι is called space-like if the restriction of ι∗g to TS is positive definite.
In that case one gets an orthogonal splitting

ι∗TM = TS ⊕NS,

where NS is the orthogonal of TS with respect to ι∗g.
Let gT and gN denote the restrictions of ι∗g to TS and NS respectively and let

∇ be the pull-back of the Levi-Civita connection on M .
For X and Y vector fields on S and ξ a section of NS, the decomposition of ∇

along TS and NS gives{
∇XY = ∇TXY + II(X,Y )
∇Xξ = −B(X, ξ) +∇NXξ

.

Here, ∇T is the Levi-Civita connection of (S, gT ), ∇N is a metric connection on
NS, II ∈ Ω1(S,Hom(TS,NS)) is called the second fundamental form and B ∈
Ω1(S,Hom(NS, TS)) is called the shape operator.

Since ∇ is torsion-free, the second fundamental form is symmetric, namely, II ∈
Ω0(Sym2(TS)∗ ⊗NS). Note also that

gN
(
II(X,Y ), ξ

)
= gT

(
B(X, ξ), Y

)
.

The mean curvature vector field of the immersion ι : S ↪→M is given by

H := trgT (II) ∈ Ω0(NS).

When S has co-dimension 1, the unit normal to the immersion allows II and H to
be interpreted as real valued tensors. The following is classical:

Proposition 3.6. The mean curvature field H vanishes identically if and only if
the space-like immersion ι : S ↪→M is a critical point of the area functional which
associates to ι the area of the metric gT .

We will call such an immersion an extremal immersion. When (NS, gN ) is pos-
itive definite, an extremal immersion locally minimizes the area will be called a
minimal immersion. On the other hand, when (NS, gN ) is negative definite, an
extremal immersion locally maximizes the area and will be called a maximal im-
mersion.

Remark 3.7. When S is endowed with a conformal structure, ι is a space-like
extremal immersion if and only if it is harmonic and conformal [ES64].

3.3. Existence of maximal space-like surfaces. In this Subsection, we prove
the existence part of Theorem 8.

Proposition 3.8. Let ρ : Γ −→ SO0(2, n+ 1) be a maximal representation. Then
there exists a ρ-equivariant maximal space-like immersion u : Σ̃ −→ H2,n.
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Proof. Let X ∈ T (Σ) be a critical point of the energy functional Eρ : T (Σ)→ R>0,
such an X exists by Proposition 2.14. By Theorem 2.30, the flat R2,n+1-bundle Eρ
with holonomy ρ decomposes orthogonally as

Eρ = U ⊕ `⊕ V ,

where ` is a negative definite line sub-bundle, U is positive definite of rank 2 and V
is a negative definite of rank n. By pulling-back this splitting to X̃, one sees that
the negative definite line sub-bundle ` defines a ρ-equivariant map

u : X̃ −→ H2,n.

We will prove that u is a conformal harmonic immersion.
Over a local chart U ⊂ X̃, the map u can be lifted to a map into Ĥ2,n ⊂ R2,n+1.

The Levi-Civita connection of Ĥ2,n is the connection induced by the flat connection
∇ on R2,n+1. Because Ĥ2,n is umbilical, u satisfies the harmonic equation of Propo-
sition 2.10 if and only if ∇∂z∇∂zu is parallel to u (here, z is a complex coordinate
on the local chart U).

Let

(E ,Φ) = IK 1 // I 1 // IK−1

βxx
⊕
Vβ†

ee ,

be the Higgs bundle associated to ρ as in Subsection 2.4 and let h be the Hermitian
metric on E solving the Higgs bundle equations. The map u is locally given by a
constant norm section of ` ⊂ I. Writing

∇ = A+ Φ + Φ∗,

where A is the Chern connection of (E , h), one gets

∇∂z∇∂zu =
[(

(A0,1 + Φ∗)(∂z)
)
◦ (A1,0 + Φ)(∂z)

]
(u)

=
[(

(A0,1 + Φ∗)(∂z)
)
◦ Φ(∂z)

]
(u)

=
[
Φ∗
(
∂z
)
◦ Φ(∂z)

]
(u).

On the second line, we used the fact that the Chern connection is diagonal in
the splitting and that u has constant norm, while for the third line, we used the
holomorphicity of Φ.

In particular, Φ(∂z)u is a section of L−1. Since the splitting E = L⊕I⊕L−1⊕V is
orthogonal with respect to the metric h, Φ∗

(
∂z
)
sends L−1 on I. Hence, ∇∂z∇∂zu

is a section of ` and is thus is parallel to u. Locally, the differential du corresponds
to ∇u = (Φ + Φ∗)u = (1 + 1∗)u which is nowhere vanishing. In particular, u is an
immersion.

The Hopf differential of u is locally given by

u∗q2,0
H = qH

(
∇∂zu,∇∂zu

)
dz2,

where qH is the C-linear extension of the metric gH on H2,n. But ∇∂zu is a section
of L−1 which is isotropic with respect to the C-bilinear symmetric form q on E . In
particular, the Hopf differential is zero, which means that u∗gH is a conformal metric
on X. Since the map u is harmonic and conformal, it is a maximal immersion. �
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Remark 3.9. In the splitting E = U ⊕ `⊕ V , the bundle V is canonically identified
with NX := (u∗NX̃)/ρ(Γ), where NX̃ is the normal bundle of the maximal space-
like immersion u : X̃ −→ H2,n. In particular, the topology of the (quotient of
the) normal bundle to u : X̃ −→ H2,n characterizes the connected component of
ρ ∈ Repmax

(
Γ,SO0(2, n+ 1)

)
.

Remark 3.10. The component of the Higgs field β ∈ Ω1,0
(
X,Hom(L−1,V)

)
is iden-

tified with the (1, 0)-part of the second fundamental form II ∈ Ω1
(
X,Hom(TX,NX)

)
of the maximal immersion u.

3.4. Gauss maps. Given a maximal representation ρ ∈ Repmax
(
Γ,SO0(2, n+1)

)
,

let u : X̃ → H2,n be the ρ-equivariant maximal space-like immersion associated to
a critical point X ∈ T (Σ) of the energy functional. In this Subsection, we describe
different Gauss maps of the maximal surface u. In particular, we show that the
ρ-equivariant minimal surface in the Riemannian symmetric space of SO0(2, n+ 1)
associated to the critical point X is a Gauss map of the maximal surface u.

Let us define the main Grassmannian G
(
R2,n+1

)
as the set of triple (F0, F1, F2)

where
• F0 ∈ H2,n is a negative definite line in R2,n+1,
• F1 is a positive definite oriented 2-plane in R2,n+1 orthogonal to F0,
• F2 = (F0 ⊕ F1)⊥.

The stabilizer of a triple (F0, F1, F2) ∈ G
(
R2,n+1

)
is the subgroup

H := SO(2)× S(O(1)×O(n)).

Hence, the main Grassmannian is the reductive homogeneous space

G
(
R2,n+1

) ∼= SO0(2, n+ 1)/H.

The map p1 : (F0, F1, F2) 7−→ F0 ⊕ F1 gives a projection of G
(
R2,n+1

)
the

Grassmannian

Gr(2,1)

(
R2,n+1

)
= SO(2, n+ 1)/S(O(2, 1)×O(n))

of signature (2, 1) linear subspaces of R2,n+1.
Similarly, we have a projection p2 : (F0, F1, F2) 7−→ F1 of G

(
R2,n+1

)
onto the

Grassmannian Gr(2,0)

(
R2,n+1

)
of oriented space-like 2-planes in R2,n+1. Note that

the Grassmannian

Gr(2,0)

(
R2,n+1

)
= SO0(2, n+ 1)/SO(2)× SO(n+ 1)

is isomorphic to the Riemannian symmetric space X of SO0(2, n+ 1).
For M,N ∈ so(2, n+ 1) ⊂ sl(n+ 3,R), the Killing form is given by

〈M,N〉 = (n+ 1)tr(MN).

In particular, the Killing form is non-degenerate on the Lie algebra h of H. Denote
by m the orthogonal complement of h. The vector space decomposition h ⊕ m of
so(2, n + 1) is Ad(H)-invariant. Hence, the Maurer-Cartan form of SO0(2, n + 1),
ω ∈ Ω1

(
SO0(2, n+ 1), so(2, n+ 1)

)
, decomposes as

ω = ωh + ωm,

where ωh ∈ Ω1(SO0(2, n+ 1), h) and ωm ∈ Ω1(SO0(2, n+ 1),m).
The H-equivariant form ωm vanishes on vertical directions of the principal H-

bundle SO0(2, n+1) −→ G(R2,n+1), and so descends to ωm ∈ Ω1
(
G(R2,n+1),AdH(m)

)
,
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where AdH(m) = SO0(2, n + 1) ×
Ad(H)

m is the associated bundle with fiber m. For

each point x ∈ G(R2,n+1), the form ωm gives an isomorphism TxG(R2,n+1) ∼= m,
and thus defines an identification

TG(R2,n+1) ∼= AdH(m).

Finally, since the Killing form is Ad(H)-invariant and the splitting h⊕m is orthogo-
nal, the Killing form defines a pseudo-Riemannian metric on G(R2,n+1) of signature
(2n+ 2, n).

The same construction applies to the homogeneous spaces Gr(2,1)

(
R2,n+1

)
and

Gr(2,0)

(
R2,n+1

)
where the Killing form induces a metric on signature (2n, n) and

(2n+ 2, 0) respectively. The induced metric on Gr(2,0)

(
R2,n+1

)
is the metric of the

symmetric space of SO0(2, n+ 1)

Definition 3.11. Given a space-like immersion v : S −→ H2,n of a surface S, the
main Gauss map of u is the map

G : S −→ G
(
R2,n+1

)
which sends a point x ∈ S to the triple

(F0(x), F1(x), F2(x)) :=
(
v(x), dv(TxS), (v(x)⊕ dv(TxS))⊥

)
.

The first and second Gauss map are respectively defined to be G1 = p1 ◦ G and
G2 = p2 ◦ G.

We have the following:

Proposition 3.12. The main, first and second Gauss maps of a ρ-equivariant
maximal immersion u : X̃ −→ H2,n are extremal space-like immersions.

Proof. Since the calculations for each of the Gauss maps are similar, we will only
prove the result for the main Gauss map. It is proved in [Ish82] that the three
Gauss maps of a maximal immersion are harmonic. Thus, to prove the result we
will show the Gauss maps are also conformal.

Recall that, given a signature (2, n+1) scalar product q on Rn+3, the Lie algebra
of SO0(2, n+ 1) is

so(2, n+ 1) =
{
M ∈ gln+3(R), qMT +MTq = 0

}
.

Writing the matrices in blocks, with

q =

 −1 0 0
0 I2 0
0 0 −In

 ,

where Ik is the identity matrix of size k × k, we get that

h =


 0 0 0

0 A 0
0 0 B

 , A ∈ so(2), B ∈ so(n)

 ,

m =


 0 A B

AT 0 C
−BT CT 0

 , A ∈M1,2(R), B ∈M1,n(R), C ∈M2,n(R)

 .



MAXIMAL REPRESENTATIONS INTO SO0(2, n) 25

In particular, if M =

 0 A B
AT 0 C
−BT CT 0

 ∈ m, then

〈M,M〉 = 2(n+ 1)
(
AAT −BBT + tr

(
CCT

))
.

More explicitly, if p = (F0, F1, F2) ∈ G(R2,n+1), then we have an identification

TpG(R2,n+1) = Hom(F0, F1)⊕Hom(F0, F2)⊕Hom(F1, F2),

and if ϕ = (ϕ1, ϕ2, ϕ3) ∈ TpG(R2,n+1), then the metric gG induced by the Killing
form is given by

gG(ϕ,ϕ) = 2(n+ 1)
(
ϕ1ϕ

†
1 − ϕ2ϕ

†
2 + tr

(
ϕ3ϕ

†
3

))
,

where ϕ†i : Fi −→ Fi−1 is obtained from ϕ∗i : F ∗i −→ F ∗i−1 using the identification
Fi ∼= F ∗i given by the induced scalar products.

Consider now u : X̃ −→ H2,n a maximal immersion, and let G : X̃ −→ G
(
R2,n+1

)
its associated main Gauss map. Given a point x ∈ X̃, we get a canonical identifi-
cation

TG(x)G ∼= Hom
(
F0(x), F1(x)

)
⊕Hom

(
F0(x), F2(x)

)
⊕Hom

(
F1(x), F2(x)

)
.

In particular, according to this splitting, we can write the differential as

dG = λ+ µ+ ν.

Moreover, λ ∈ Ω1
(
X̃,G∗(Hom(F0, F1)

)
corresponds to the differential of u, µ ∈

Ω1(X̃,G∗(Hom(F0, F2)
)
is zero by construction of the main Gauss map and ν ∈

Ω1(X̃,G∗(Hom(F1, F2)
)
is identified with the second fundamental form of the im-

mersion.
If ∂G denotes the C-linear part of dG and by qG the C-linear extension of gG,

then ∂G = ∂u + β where β is the (1, 0)-part of the second fundamental form, and
so is identified with the part of the Higgs field sending L−1 to V (see Remark 3.10).

The Hopf differential of G is thus given by

Hopf(G) = qG(∂G, ∂G)

= 2(n+ 1)Hopf(u)− 2(n+ 1)tr
(
ββ†

)
= −(n+ 1)tr

(
ββ†

)
= 0.

For the last equation, we used the fact that β† sends V to L (see subsection 2.4).
Finally, a similar computation shows that G∗gG = (n + 1)‖Φ‖2, and thus never
vanishes. In particular, G is a space-like immersion. �

3.5. Uniqueness of the maximal surface. Let ρ ∈ Repmax(Γ,SO0(2, n+ 1)) be
a maximal representation. In this subsection, we prove the following theorem:

Theorem 3.13. Let S1 and S2 be two connected ρ-invariant maximal space-like
surfaces in H2,n on which ρ(Γ) acts co-compactly. Then S1 = S2.

As a corollary, we prove Labourie’s conjecture for maximal representations into
Hermitian Lie groups of rank 2.



26 BRIAN COLLIER, NICOLAS THOLOZAN, AND JÉRÉMY TOULISSE

Corollary 3.14. Let ρ be a maximal representation from Γ into a Hermitian Lie
group of rank 2. Then the energy functional Eρ : T (Σ)→ R defined in Subsection
2.3 has a unique critical point X. Moreover, the corresponding minimal immersion
f : X̃ → X is an embedding.

Note that when n = 1, Theorem 3.13 was obtained by Barbot, Béguin, Zeghib
[BBZ03] and its corollary was obtained by Schoen [Sch93] (see Remark 3.27 for
details).

Proof of Corollary 3.14 assuming Theorem 3.13 (as well as Corollary 3.21 and Corollary 3.14).
By [BIW10], the Zariski closure of the image of ρ(Γ) is of tube type; thus, we can
assume that Γ takes values in SO0(2, n+ 1) for some n (see Remark 1.10). Let X1

and X2 be two critical points of Eρ. Proposition 3.8 constructs two ρ-equivariant
maximal space-like immersions u1 : X̃1 → H2,n and u2 : X̃2 → H2,n. By Theorem
3.13, these two immersions have the same image S. Moreover, since S is homeo-
morphic to a disc (see Corollary 3.21), both u1 and u2 are diffeomorphisms onto S.
The map u2 ◦ u−1

1 induces a biholomorphism from X1 to X2 that is homotopic to
the identity. Hence X1 = X2 in T (Σ).

Finally, by Proposition 3.12, the minimal ρ-equivariant immersion f1 : X̃ → X =
Gr(2,0)

(
R2,n+1

)
is the second Gauss map of the map u1. Corollary 3.21 will show

that u1 is an embedding, and Corollary 3.17 will show that every negative definite
linear subspace of R2,n+1 of dimension n + 1 intersects u1(X̃1) exactly once. In
particular, the second Gauss map of u1 is injective, which concludes the proof of
Corollary 3.14. �

In order to prove Theorem 3.13, we first need some elementary results about
space-like surfaces in H2,n invariant under the action of a maximal representa-
tion. Fix S a connected ρ-invariant space-like surface in H2,n on which ρ(Γ) acts
co-compactly. We denote by ∂∞S the topological boundary of S in the compacti-
fication H2,n ∪Ein1,n. Let Ŝ denote the inverse image of S by the projection from
Ĥ2,n to H2,n.

Proposition 3.15. The lift Ŝ of S has at most two connected components diffeo-
morphic to discs. Moreover, if we identify Ĥ2,n with D× Sn as in Proposition 3.5,
then each of these connected components identifies with the graph of a Lipschitz
map from D to Sn.

Remark 3.16. We will see in Corollary 3.21 that Ŝ indeed has two connected com-
ponents and that S itself is homeomorphic to a disc.

Proof. Denote the metric 4
(1−‖u‖2)2

gD by gH2 , and let π : Ŝ → D be the projection
on the first factor. We have

π∗gH2 ≥ gH2,n ,

where gH2,n is the metric induced on Ŝ. Since Ŝ is space-like and ρ(Γ) acts co-
compactly on Ŝ, the metric gH2,n is a complete Riemannian metric on Ŝ. Therefore,
π∗gH2 is also a complete Riemannian metric on Ŝ. It follows that π : Ŝ → H2 is
a proper immersion, hence a covering. Since H2 is simply connected and S is
connected, Ŝ has at most 2 connected components diffeomorphic to discs.

Let Ŝ0 be one of the connected components of Ŝ. Since the projection Ŝ0 to D
is a diffeomorphism, Ŝ is the graph of a C1 map f : D→ Sn. For every z ∈ D and
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every v ∈ TzD, we have

4(
1− ‖z‖2

)2 ‖v‖
2 −

(
1 + ‖z‖2

1− ‖z‖2

)2

‖dfz(v)‖2 > 0

since Ŝ0 is space-like. Therefore,

(11) ‖dfz(v)‖ < 2

1 + ‖z‖2
≤ 2

and f is Lipschitz. �

Note that one can choose the identification of Ĥ2,n with D×Sn so that {0}×Sn

is the intersection of Ĥ2,n with any given negative definite linear subspace of R2,n+1

of dimension n+ 1. One thus obtains the following corollary:

Corollary 3.17. Any negative definite subspace of R2,n+1 of dimension n + 1
intersects S exactly once.

Let ξ : ∂∞Γ→ Ein1,n be the ρ-equivariant boundary map from Theorem 2.4.

Lemma 3.18. For every γ ∈ Γ, there exists a point x ∈ S such that

ρ(γ)n · x −→
n→+∞

ξ(γ+) .

Proof. Fix γ ∈ Γ. By Corollary 2.5, one can find isotropic vectors e+ and e− in
R2,n+1 with 〈e+, e−〉 = 1 and a λ > 1 such that ρ(γ)·e+ = λe+ and ρ(γ)·e− = 1

λe−.
Moreover, if V denotes the orthogonal of the vector space spanned by e− and e+,
then the restriction of ρ(γ) to V has spectral radius strictly less than λ.

Let x be a point in S and x̂ be a lift of x in Ĥ2,n. Up to scaling e− and e+, we
can write

x̂ = α(e− + e+) + v ,

for some α ∈ R and some v ∈ V . We thus have

ρ(γ)n · x̂ = λnαe+ + λ−nαe− + ρ(γ)nv .

Since ρ(γ)|V has spectral radius strictly less than λ, we deduce that ρ(γ)n · x
converges (in RPn+2) to [e+] = ξ(γ+) unless α = 0.

Assume by contradiction that ρ(γ)n ·x does not converge to ξ(γ+) for any x ∈ S.
In this case, S is included in Proj(V ). However, this is not possible because the
intersection of H2,n with Proj(V ) is a sub-manifold of signature (1, n − 1), and
hence, cannot contain a space-like surface. �

Corollary 3.19. The boundary of S in H2,n∪Ein1,n is the image of ξ. We denote
it by ∂∞S.

Proof. Let Ŝ0 be a connected component of Ŝ. By Proposition 3.15, Ŝ0 is the
graph of a Lipschitz map f : D → Sn. The map h extends to a continuous map
∂f : ∂D → Sn and the boundary of Ŝ0 is the graph of ∂f (seen as a subset of
Êin

1,n
). In particular, it is a topological circle, and so is its projection to Ein1,n.

Now, by Lemma 3.18, ∂∞S contains ξ(γ+) for every γ ∈ Γ. Since the set
{γ+, γ ∈ Γ} is dense in ∂∞Γ, we deduce that ∂∞S contains the image of ξ. Since
the image of ξ is also a topological circle, we conclude that ∂∞S is exactly the
image of ξ. �



28 BRIAN COLLIER, NICOLAS THOLOZAN, AND JÉRÉMY TOULISSE

Lemma 3.20. Let x be a point in S. Then S ∪ ∂∞S does not intersect x⊥.

Proof. Let x̂ be a lift of x in Ĥ2,n and Ŝ0 the lift of S containing x̂. Since the space
Ĥ2,n is homogeneous, we can choose an identification of Ĥ2,n with D × Sn so that
x̂ is identified to the point (0, v0) for some v0 ∈ Sn.

Let f : D→ Sn be such that Ŝ0 ∪ ∂∞Ŝ0 is the graph of f . In particular, we have
f(0) = v0. For z be a point in D, we have

dSn(f(z), v0) ≤
∫ ‖z‖

0

∥∥∥∥d

dt
f(tz)

∥∥∥∥ dt

<

∫ ‖z‖
0

2

1 + t2
by (11)

< 2 arctan(‖z‖) ≤ π

2
.

Since points orthogonal to f(z) are at a distance π
2 in Sn, v0 is not orthogonal to

f(z), and we conclude that the point (z, f(z)) ∈ Êin
1,n

is not in the orthogonal
of x̂. Since this is true for any z ∈ D and since S ∪ ∂∞S is the graph of f , this
concludes the proof of the lemma. �

Corollary 3.21. The lift of S∪∂∞S to Ĥ2,n∪Êin
1,n

has two connected components,
and S is homeomorphic to a disc.

Proof. The projection from Ŝ ∪∂∞Ŝ to S ∪∂∞S is a covering of degree 2. Let x be
a point in Ŝ. Then the function from ∂∞Ŝ to {−1, 1} associating to y the sign of
〈x, y〉 is a well-defined continuous function. Since 〈x,−y〉 = −〈x, y〉, this function
takes both possible values and Ŝ ∪ ∂∞Ŝ thus has two connected components.

The covering of degree 2 from Ŝ to S is thus a trivial covering. Since each
connected component of Ŝ is homeomorphic to a disc, so is S. �

Definition 3.22. Let ∂∞Ŝ0 be one connected component of ∂∞Ŝ. The convex hull
of ∂∞Ŝ0 is the set of vectors u ∈ Ĥ2,n such that any linear form on R2,n+1 which is
positive on ∂∞Ŝ0 is positive on u. The convex hull of ∂∞S, denoted Conv(∂∞S),
is the projection to H2,n of the convex hull of either connected component of ∂∞Ŝ.

Proposition 3.23. Assume that S is a maximal surface. Then S is included in
the convex hull of ∂∞S.

Proof. Let us choose Ŝ0 a connected component of Ŝ, and let ϕ be a linear form
R2,n+1 which is positive on ∂∞Ŝ0. If u0 is a point in Ŝ0 and u̇0 a tangent vector to
Ŝ0 at u0, then we have

Hessu0
ϕ|Ŝ0

(u̇0) = q(u̇0)ϕ(u0) + ϕ(II(u̇0, u̇0)) ,

where II denotes the second fundamental form of Ŝ0 in Ĥ2,n. Since Ŝ0 is a maximal
surface, the trace of II with respect to the metric induced by q on Ŝ0 vanishes. We
deduce that ϕ satisfies the equation

∆ϕ|Ŝ0
= ϕ|Ŝ0

,

where ∆ is the Laplace operator of the metric induced by q on Ŝ0.



MAXIMAL REPRESENTATIONS INTO SO0(2, n) 29

Now, by assumption, ϕ|Ŝ0
is positive in a neighborhood of ∂∞Ŝ0. The classical

maximum principle then implies that ϕ is positive on Ŝ0. Therefore, Ŝ0 is included
in Conv

(
∂∞Ŝ0

)
and S is included in Conv(∂∞S). �

We now turn to the proof of Theorem 3.13. Let S1 and S2 be two maximal
ρ-invariant space-like surfaces in H2,n on which ρ acts co-compactly. Assume by
contradiction that S1 and S2 are distinct. Let us start by lifting S1 and S2 to Ĥ2,n

so that the two lifts have the same boundary. To simplify notations, we still denote
those lifts by S1 and S2. Let 〈·, ·〉 denote the symmetric bilinear form associated to
the quadratic form q on R2,n+1.

Lemma 3.24. For all (u, v) ∈ S1 × S2,

〈u, v〉 < 0 .

Proof. By Lemma 3.20, for any u ∈ S1, the linear form 〈u, ·〉 is negative on ∂∞S1.
Moreover, since ∂∞S2 = ∂∞S1, Proposition 3.23 implies that S2 is included in
Conv (∂∞S1). Therefore, the linear form 〈u, ·〉 is negative on S2. �

Lemma 3.25. If S1 6= S2, then there exists (u, v) ∈ S1 × S2 such that

〈u, v〉 > −1 .

Proof. Assume that S1 is not included in S2. Let x be a point in S1 which is not
in S2. Choose identification of Ĥ2,n with D× Sn for which x is identified to (0, v0)
for some v1 ∈ Sn. Since S2 is the graph of some function f : D → Sn, there exists
v2 ∈ Sn such that y = (0, v2) ∈ S2. Since x 6∈ S2, we have v2 6= v1 and therefore

〈x, y〉 = −〈v1, v2〉 > −1 .

�

Lemma 3.26. The function

B : S1 × S2 → R>0

(u, v) 7→ 〈u, v〉

achieves its maximum.

Proof. Let (un, vn) ∈ (S1 × S2)
N be a maximizing sequence for B. Since ρ(Γ)

preserves B and acts co-compactly on S1, we can assume that (un)n∈N is bounded
in S1. Up to extracting a sub-sequence, we can assume that un converges to u ∈ S1.
By Lemma 3.25, we know that B(un, vn) > −1 for n sufficiently large. Assume by
contradiction that (vn)n∈N is unbounded in S2. Up to extracting a sub-sequence,
there exists εn −→

n→+∞
0 such that εnvn converges to a vector v ∈ ∂∞S2. Since

B(un, vn) is bounded, we have

B(u, v) = lim
n→+∞

εnB(un, vn) = 0 .

The vector v is thus in u⊥. Since ∂∞S1 = ∂∞S2, this contradicts Lemma 3.20. �

We now have all the tools needed to apply the minimum principle to B and prove
Theorem 3.13.
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Proof of Theorem 3.13. Let (u0, v0) ∈ S1 × S2 be a point where B achieves its
maximum. By Lemmas 3.24 and 3.25, we have

−1 < B(u0, v0) < 0 .

For u̇0 ∈ Tu0S1 and v̇0 ∈ Tv0S2, let (u(t))t∈(−ε,ε) and (v(t))t∈(−ε,ε) be geodesic
paths on S1 and S2 respectively, satisfying u(0) = u0, u′(0) = u̇0 and v(0) = v0,
v′(0) = v̇0.

Since B(u(t), v0) is maximal at t = 0, we have 〈u̇0, v0〉 = 0. Since q(u(t)) = −1
for all t, we also have 〈u̇0, u0〉 = 0. Similarly, we have 〈v̇0, u0〉 = 〈v̇0, v0〉 = 0. We
thus obtain that Tu0S1 and Tv0S2 are both orthogonal to u0 and v0.

The second derivative of B(u(t), v(t)) at t = 0 is given by

(12)
d2

dt2 |t=0
B(u(t), v(t)) = 2 〈u̇0, v̇0〉+ 〈II1(u̇0, u̇0), v0〉+ 〈II2(v̇0, v̇0), u0〉

+ q(u̇0) 〈u0, v0〉+ q(v̇0) 〈u0, v0〉 ,

where II1 : Tu0
S1 × Tu0

S1 → u⊥0 and II2 : Tv0S2 × Tv0S2 → v⊥0 denote respectively
the second fundamental forms of S1 and S2 in Ĥ2,n. Our goal is to find u̇0 and v̇0

such that this second derivative is positive.
Since S1 is a maximal surface in Ĥ2,n, the quadratic form β1 : w 7→ 〈II1(w,w), v0〉

on (Tu0
(S1),q) has two opposite eigenvalues λ and −λ. Similarly, the quadratic

form w 7→ 〈II2(w,w), v0〉 on (Tv0(S2),q) has two opposite eigenvalues µ and −µ.
Up to switching S1 and S2, we may assume that λ ≥ µ ≥ 0. We now choose u̇0 and
v̇0 such that

q(u̇0) = 1 and v̇0 =
p(u̇0)√
q(p(u̇0))

where β1(u̇0) = λ and p : {u0, v0}⊥ → Tv0S2 denotes the orthogonal projection.
Since q(u0) = q(v0) = −1 and | 〈u0, v0〉 | < 1, the restriction of q to Vect(u0, v0)

is negative definite. The restriction of q to Vect(u0, v0)⊥ thus has signature (2, n−
2). Since Tv0S2 is a space-like plane in Vect(u0, v0)⊥, we can write u̇0 = p(u̇0) +w
where q(w) ≤ 0. We thus have

q(p(u̇0)) = q(u̇0)− q(w) ≥ q(u̇0) = 1 ,

and therefore
〈u̇0, v̇0〉 =

√
q(p(u̇0)) ≥ 1 .

Let us now get back to Equation (12). With our choices of u̇0 and v̇0, we have
β1(u̇0) = λ and β2(v̇0) ≥ −µ ≥ −λ. Since 〈u0, v0〉 = B(u0, v0) > −1, we have

d2

dt2 |t=0
B(u(t), v(t)) = 2 〈u̇0, v̇0〉+ 2 〈u0, v0〉+ β1(u̇0) + β2(v̇0)

≥ 2 〈u0, v0〉+ 2

> 0 .

This contradicts the maximality of B at (u0, v0). �

Remark 3.27 (Comparison with the work of Labourie and Bonsante–Schlenker). In
the case of SO0(2, 2), Corollary 3.14 was proven directly by Schoen [Sch93] (see also
Labourie [Lab92]). This case is quite special because SO0(2, 2) is a degree 2 cover
of PSL(2,R)× PSL(2,R) and SO0(2, 2)/S(O(2)×O(2)) identifies with H2 ×H2.
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Krasnov – Schlenker [KS07] and Bonsante – Schlenker [BS10] later clarified the
link between maximal surfaces in H2,1 and minimal surfaces in H2×H2. In [BS10],
they gave an intrinsic proof of the uniqueness of a maximal surface in H2,1 in a
more general setting. In their proof, they maximize the time-like distance between
a point in S1 and a point in S2 and derive a contradiction from a maximum prin-
ciple. This approach requires an estimate on the curvature of the maximal surface.
Our strategy above is inspired by their proof, except that we apply the maximum
principle to the scalar product instead of the space-like distance, which does not
require any curvature estimate. This relieves us from extra technical difficulties.

3.6. Length spectrum of maximal representations. In this section, we ex-
ploit the pseudo-Riemannian geometry of H2,n and the existence of a ρ-equivariant
maximal space-like embedding of Σ̃ to obtain a comparison of the length spectrum
of ρ with that of a Fuchsian representation.

In our setting, we define the length spectrum of a representation ρ as follows.

Definition 3.28. Let ρ be a representation of Γ into SO0(2, n + 1). The length
spectrum of ρ is the function Lρ : Γ→ R+ that associates to an element γ ∈ Γ the
logarithm of the spectral radius of Lρ(γ) (seen as a squared matrix of size n+ 3).

Remark 3.29. Since, for A ∈ SO0(2, n + 1), A and A−1 have the same spectral
radius, this definition coincides with Definition 1.3.

Theorem 3.30. If ρ : Γ→ SO0(2, n+ 1) is a maximal representation, then either
ρ is in the Fuchsian locus (see Definition 2.7), or there exists a Fuchsian represen-
tation j : Γ→ SO0(2, 1) and λ > 1 such that

Lρ ≥ λLj .

Remark 3.31. The representation ρ is in the Fuchsian locus if and only if it stabilizes
a totally geodesic space-like copy of H2 in H2,n. The induced action of ρ on H2

gives a Fuchsian representation j such that Lj = Lρ.

Remark 3.32. Let mirr denote the irreducible representation of SO0(2, 1) into
PSL(n,R). For a Hitchin representation ρ : Γ → PSL(n,R), one could hope to
find a Fuchsian representation j : Γ→ SO0(2, 1) such that

Lρ ≥ Lmirr◦j =
n− 1

2
Lj .

However, this statement fails to be true for n ≥ 4 (see [LZ14, Section 3.3]). In partic-
ular, it is not true for Hitchin representations into SO0(2, 3) for which, nonetheless,
Theorem 3.30 gives a weaker result.

In order to prove Theorem 3.30, let us fix a maximal representation ρ : Γ →
SO0(2, n+1) and let u : Σ̃→ H2,n be a ρ-equivariant maximal space-like embedding.
The pseudo-Riemannian metric on H2,n induces a Riemannian metric gu on Σ by
restriction. By Poincaré’s Uniformization Theorem, the metric gu is conformal to
a unique metric gP of constant curvature −1.

Lemma 3.33. Either ρ is in the Fuchsian locus, or there exists λ > 1 such that
gu ≥ λgP .
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Proof. Let κ(gu) denote the Gauss curvature of gu. Recall that κ(gu) can be com-
puted from the second fundamental form by the formula :

κ(gu)x = −1−
n∑
i=1

det
gu

〈
IIu(x)(·), ei

〉
where (ei)1≤i≤n is an orthonormal basis of the orthogonal of Tf(x)f(Σ). (Note that
the minus sign in front of the sum comes from the fact that the metric of H2,n is
negative definite on this orthogonal.)

Since f(Σ) is maximal, the quadratic form
〈
IIu(x)(·), ei

〉
has trace 0 with respect

to gu and thus detgu
〈
IIu(x), ei

〉
≤ 0, with equality if and only if IIu(x) = 0. There-

fore, κ(gu) ≥ −1, and if κ(gu) = −1 everywhere, then u(Σ̃) is totally geodesic.
The Lemma now follows from the classical Ahlfors–Schwarz–Pick lemma (see for
instance [Wol82]). �

Let g be a Riemannian metric on Σ and denote by dg the associated distance on
Σ̃. We define the length spectrum of g as the map

Lg : Γ → R+

γ 7→ limn→+∞
1
n dg(x, γ

n · x)
,

where x is any point in Σ̃.
From now on, we assume that ρ does not preserve a copy of H2. It follows from

Lemma 3.33 that Lgu ≥ λLgP for some λ > 1. Let j be the Fuchsian representation
uniformizing gP , i.e. such that there exists a j-equivariant isometry from (Σ̃, gP )
to H2. We then have

λLj = λLgP ≤ Lgu .
In order to prove Theorem 3.30, it is thus enough to show the following:

Lemma 3.34. We have
Lρ ≥ Lgu .

In order to prove this lemma, we need another characterization of Lρ. Recall
that dH2,n(x, y) denotes the length of the space-like geodesic segment between x and
y. Recall that, if x and y are joined by a space-like geodesic, dH2,n(x, y) denotes the
length of the space-like geodesic segment between x and y. We set dH2,n(x, y) = 0
otherwise.

Proposition 3.35. For any γ ∈ Γ and any x ∈ u(Σ̃), we have

Lρ(γ) = lim
n→+∞

1

n
dH2,n(x, ρ(γ)n · x) .

Proof. By Corollary 2.5, one can find two isotropic vectors e+ and e− ∈ R2,n+1 with
〈e+, e−〉 = 1 such that ρ(γ) · e+ = eLρ(γ)e+ and ρ(γ) · e− = e−Lρ(γ)e−. Moreover,
if V denotes the orthogonal of the vector space spanned by e− and e+, then the
spectral radius of the restriction of ρ(γ) to V is strictly less than eLρ (γ).

Let v ∈ R2,n+1 be a vector of norm −1 whose projection [v] to H2,n lies in u(Σ̃).
We can write

v = α−e− + α+e+ + w ,

with w ∈ V . By Proposition 3.19, we have

ρ(γ)n · [v] −→
n→+∞

[e+]
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and
ρ(γ)n · [v] −→

n→−∞
[e−]

Hence α+ and α− are non-zero.
We have

1

n
dH2,n([v], ρ(γ)n · [v]) =

1

n
cosh−1 (〈v, ρ(γ)n · v〉) .

The right side of the equation is given by
1

n
cosh−1

∣∣∣〈α−e− + α+e+ + w,α−e
−nLρ(γ)e− + α+e

nLρ(γ)e+ + ρ(γ)n · w
〉∣∣∣ ,

and thus,
1

n
dH2,n([v], ρ(γ)n · [v]) =

1

n
cosh−1 |2α−α+ cosh(nLρ(γ)) + 〈w, ρ(γ)n · w〉| .

Since the spectral radius of ρ(γ) restricted to V is strictly less than Lρ(γ), the term
〈w, ρ(γ)n · v〉 is negligible and we obtain

1

n
dH2,n([v], ρ(γ)n · [v]) −→

n→+∞
Lρ(γ).

�

In order to conclude the proof of Lemma 3.34, it suffices to prove the following:

Proposition 3.36. If x and y ∈ u(Σ̃) are joined by a space-like geodesic segment,
then we have du(x, y) ≤ dH2,n(x, y).

Remark 3.37. Though we don’t need it, one could easily deduce from the computa-
tions in the proof of Lemma 3.20 that two distinct points in u(Σ̃) are always joined
by a space-like geodesic.

Proof of Proposition 3.36. Recall that, according to Proposition 3.5, the space Ĥ2,n

is isometric to a warped product

H2 × Sn

with the metric
g = gH2 ⊕−wgSn ,

for some positive function w on H2. In this warped product structure, the horizontal
slices H2 × {x2} are totally geodesic.

Let x and y be two points in u(Σ̃) let x̂ and ŷ be lifts of x and y to Ĥ2,n belonging
to the same lift Ŝ of f(Σ̃). Let us choose a warped product structure on Ĥ2,n such
that x and y belong to the same horizontal slice.

Let π denote the restriction to Ŝ of the projection on the H2 factor with respect
to this warped product structure. We then have

dH2,n(x, y) = dH2(π(x), π(y)) .

By Proposition 3.15, π is a diffeomorphism. Moreover, given the warped product
structure of the metric gH2,n , we have

(13) π∗gH2 ≥ gH2,n

on u(Σ̃).
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Let c : [0, 1]→ H2 denote the geodesic segment between π(x) and π(y). We have

du(x, y) ≤
∫ 1

0

√
gH2

(
d

dt
π−1 ◦ c(t)

)
dt

≤
∫ 1

0

√
gH2

(
d

dt
c(t)

)
dt = dH2(π(x), π(y)) = dH2,n(x, y) .

�

We can now conclude that for any γ ∈ Γ,

Lgu(γ) = lim
n→+∞

1

n
du(x, γn · x)

≤ lim
n→+∞

1

n
dH2,n(x, γn · x) = Lρ(γ) ,

which proves Lemma 3.34 and thus Theorem 3.30.

4. Geometric structures associated to maximal representations

In this section, we realize maximal representations in SO0(2, n+1) as holonomies
of geometric structures. More precisely, we prove the following two theorems:

Theorem 4.1. The holonomy gives a surjective map from the space of fibered
photon structures on iterated sphere bundles over Σ onto the set of maximal repre-
sentations in SO0(2, n+ 1).

Theorem 4.2. For any Hitchin representation ρ ∈ Hit(Γ,SO0(2, 3)), there exists
a maximally fibered conformally flat Lorentz structure on the unit tangent bundle
π : T 1Σ −→ Σ whose holonomy is ρ ◦ π∗.

The notions of fibered photon structure, iterated sphere bundles, and maximally
fibered conformally flat Lorentz structures are described in the next subsections.

4.1. (G,X)-structures. Here we recall the basic theory of (G,X)-structures. For
more details, the reader is referred to [Gol88a].

In this subsection, G will be a semi-simple Lie group,X = G/H aG-homogeneous
space and M a manifold such that dim(M) = dim(X).

Definition 4.3. A (G,X)-structure onM is a maximal atlas of charts taking values
in X whose transition functions are locally restriction of elements in G.

Two (G,X)-structures on M are equivalent if there exists a diffeomorphism f :
M −→ M isotopic to the identity whose expression in local charts is given by
elements in G.

One can associate to a (G,X)-structure on M a developing pair (dev, ρ) where

ρ : π1(M) −→ G

is called the holonomy of the structure and

dev : M̃ −→ X

is a ρ-equivariant local homeomorphism called the developing map.
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The developing pair is not uniquely defined. Given two developing pairs (dev1, ρ1)
and (dev2, ρ2), if there exists an element g ∈ G so that{

dev1 = g ◦ dev2

ρ2(γ) = g ◦ ρ1(γ) ◦ g−1, ∀γ ∈ π1(M)
,

then (dev1, ρ1) and (dev2, ρ2) correspond to equivalent (G,X)-structures. It is
well-known (see for example [Gol88a]) that a developing pair fully determine the
(G,X)-structure on M .

In particular, if D(G,X)(M) is the moduli space of equivalence classes of (G,X)-
structures on M , then we get a well-defined map

hol : D(G,X)(M) −→ Rep(π1(M), G),

where Rep(π1(M), G) := Hom
(
π1(M), G

)
/G is the representation variety.

The well-known Ehresmann–Thurston principle sates that this map induces a
local homeomorphism from the set of equivalence classes of (G,X)-structures on
M to the representation variety.

Theorem 4.4 (Thu80, Chapter 3). Let ρ0 be the holonomy of a (G,X)-structure
on a closed manifold M . Then any representation ρ : π1(M)→ G sufficiently close
to ρ is the holonomy of a (G,X)-structure on M close to the initial one, which is
unique up to equivalence.

An X-bundle over M is a fiber bundle p : X → M obtained by gluing together
sets of the form Ui×X ∼= p−1(Ui), where {Ui}i∈I is a covering of M is an open set
and for Ui ∩ Uj 6= ∅, the transition functions have the form

Ψ : (Ui ∩ Uj)×X −→ (Ui ∩ Uj)×X
(m,x) 7−→

(
m, g(m)x

)
where g is a smooth map from Ui ∩ Uj to G.

Given a principal G-bundle P → M , the quotient P/H is a X-bundle. Con-
versely, given an X-bundle over M , there exists an open covering U =

{
Ui
}
i∈I of

M such that the transition functions define a family of maps gij : Ui ∩ Uj → G
for any pair (i, j) with Ui ∩ Uj 6= ∅. These maps satisfy the cocycle condition
gijgjkgki = 1 on triple intersections Ui ∩ Uj ∩ Uk 6= ∅. By gluing together sets of
the form Ui ×G with the same cocyle, we obtain a principal G-bundle that we call
the underlying principal G-bundle.

Definition 4.5. Two principal G-bundles P1 and P2 overM are isomorphic if there
exists a G-equivariant diffeomorphism from P1 to P2 lifting the identity on M(or,
equivalently, if the principal G-bundle Mor(P1, P2) of morphisms from P1 to P2

admits a global section).
TwoX-bundles are isomorphic if the underlying principal bundles are equivalent.

Given ρ ∈ Rep(π1(M), G), one can associate an X-bundle Xρ defined by

Xρ := Pρ/H,

where Pρ is the flat principal G-bundle with holonomy ρ. Equivalently, Xρ =(
M̃ ×X

)
/π1(M), where the action of γ ∈ π1(M) on (m,x) ∈ M̃ ×X is given by

γ.(m,x) = (γ.m, ρ(γ)x).
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The bundle Xρ is equipped with a flat structure, that is an integrable distribution
of the dimension of M transverse to the fibers of p : Xρ −→M . It follows that for
each x ∈ Xρ, we have a splitting

TxXρ = T vxXρ ⊕ ThxXρ.

Here T vxXρ = ker(dpx) is the vertical tangent space and ThxXρ is the horizontal
tangent space given by the distribution. Note also that the projection p : Xρ −→M
identifies ThxXρ with Tp(x)M .

In this language, a developing map wih holonomy ρ corresponds to a section s
of Xρ transverse to the horizontal distribution.

4.2. Fibered photon structures.

Definition 4.6. A photon in R2,n+1 is an isotropic 2-plane. We denote byPho(R2,n+1)
the set of photons in R2,n+1.

Remark 4.7. Equivalently, a photon is a projective line inside the set of isotropic
lines Ein1,n ⊂ RPn+1. Such a projective line is necessarily the projectivization of
an isotropic plane in R2,n+1.

The group O(2, n + 1) acts transitively on Pho
(
R2,n+1

)
and the stabilizer of a

photon is a parabolic subgroup denoted P . We thus get an identification

Pho
(
R2,n+1

) ∼= O(2, n+ 1)/P.

Lemma 4.8. For n > 0, the space Pho(R2,n+1) is diffeomorphic to the unit tan-
gent bundle of the sphere Sn (sometimes called iterated sphere). In particular,
Pho

(
R2,2

) ∼= S1 t S1, Pho
(
R2,3

) ∼= RP3 and for n > 2, Pho(R2,n+1) is simply
connected.

Proof. Consider an orthogonal splitting R2,n+1 = E ⊕ F where E is a positive
definite 2-plane, F = E⊥ and denote by gE (respectively gF ) the scalar product
induced on E (respectively F ). For each photon V ∈ Pho(R2,n+1), the orthogonal
projection pE : R2,n+1 → E restricts to an isomorphism between V and E. In
particular, each photon is the graph of a linear map ϕ : E → F . We thus get an
injective map

Ψ : Pho(E ⊕ F ) −→ Hom(E,F ).

The image of Ψ consists of those linear maps ϕ : E → F such that gE(x, y) =
−gF (ϕ(x), ϕ(y)) for any x, y ∈ E.

Fixing an orthonormal basis (e1, e2) of E, such a map ϕ : E → F is fully
determined by the pair of orthonormal vectors (ϕ(e1), ϕ(e2)) ∈ F 2. The vector
ϕ(e1) defines a point in Sn while ϕ(e2) is a unit vector orthogonal to ϕ(e1) and
thus defines a point in T 1

ϕ(e1)S
n.

�

By considering Pho(R2,n+1) as a sub-manifold of the Grassmannian of 2-planes
in Rn+3, one gets that TVPho(R2,n+1) ⊂ Hom(V,R2,n+1/V ). Given a negative
definite line ` ∈ H2,n, `⊥ ∼= R2,n ⊂ R2,n+1 and one gets a natural embedding

Pho
(
`⊥
)
↪→ Pho

(
R2,n+1

)
.

The following lemma is straightforward (by a dimension argument):
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Lemma 4.9. For V ∈ Pho(`⊥) ⊂ Pho
(
R2,n+1

)
, the post-composition with the

orthogonal projection p` : R2,n+1 → ` gives a linear morphism from TVPho(R2,n+1)
to Hom(V, `) the kernel of which is exactly TVPho(`⊥).

We now define a special class of photon structures:

Definition 4.10. A fibered photon structure is a
(
O(2, n+1),Pho(R2,n+1)

)
-structure

on a Pho
(
R2,n

)
-bundle π : M → Σ whose holonomy along the fiber is trivial and

whose developing map sends each fiber Mx bijectively to a copy of Pho
(
R2,n

)
in

Pho
(
R2,n+1

)
.

Two fibered photon structures on π : M → Σ are equivalent if there exists
a diffeomorphism f : M → M isotopic to the identity giving an equivalence of(
O(2, n+ 1),Pho(R2,n+1)

)
-structure and preserving the fibers.

Remark 4.11. By definition, the holonomy representation of a fibered photon struc-
ture factors through a representation ρ of Γ into O(2, n+1) and its developing map
descends to a ρ-equivariant local diffeomorphism

dev : Σ̃×Pho
(
R2,n

)
−→ Pho(R2,n+1)

which sends the fibers bijectively onto copies of Pho(R2,n) and which is equivariant
with respect to ρ : Γ→ O(2, n+ 1). In particular, for n = 2, the image of dev has
two connected components.

Given a fibered photon structure on M , the associated surface is the map

(14) u : Σ̃ −→ H2,n

x 7−→ F⊥x ,

where Fx ∼= R2,n is such that dev(Mx) = Pho(Fx). Such a map is equivariant with
respect to the holonomy representation of the fibered photon structure.

Lemma 4.12. Let ρ : Γ→ O(2, n+1) be the holonomy of a fibered photon structure.
Then ρ is a maximal representation into the index two subgroup of O(2, n+ 1).

Proof. By local injectivity, the developing map of a fibered photon structure sends
the fibers of all points in a neighborhood of x ∈ Σ̃ to disjoint photons inPho

(
R2,n+1

)
.

For y ∈ Σ̃ in a small neighborhood of x, Fx ∩Fy =
(
u(x)⊕u(y)

)⊥. But dev(Mx)∩
dev(My) = ∅ if and only if

(
u(x) ⊕ u(y)

)⊥ does not contain any isotropic plane,
that is if and only if

(
u(x) ⊕ u(y)

)⊥ ∼= R1,n. It follows that u(x) ⊕ u(y) ∼= R1,1,
and so the geodesic passing through u(x) and u(y) is space-like. Since dev is a
local diffeomorphism, an infinitesimal version of the above argument implies that
the map u is smooth and space-like.

The second Gauss map of u (see Subsection 3.4) gives a reduction of structure
group of the principal O(2, n+ 1)-bundle Pρ to a O(2)×O(n+ 1) principal bundle.
Moreover, the underlying O(2) bundle is identified via u with the unit tangent
bundleT 1Σ. In particular, it is orientable and the structure group thus reduces to
SO(2)×O(n+ 1). Finally, it has Euler class 2− 2g. Therefore, the absolute value
of the Toledo invariant of ρ is 2g − 2. �

4.3. Constructing photon structures. We will now show that, conversely, any
maximal representation into SO0(2, n+1) is the holonomy of a fibered photon struc-
ture. Note that, though we restricted ourselves to the connected component of the
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identity in O(2, n + 1), one could easily extend the result to maximal representa-
tions into the index two subgroup of O(2, n + 1) with maximal compact subgroup
SO(2)×O(n+ 1).

Let ρ ∈ Repmax
(
Γ,SO0(2, n + 1)

)
be a maximal representation. By Theorem

2.30, the flat vector bundle E with holonomy ρ splits as

E = U ⊕ `⊕ V,

where ` is a negative definite line sub-bundle, (U, gU ) is a positive definite rank
2 sub-bundle of Euler class 2g − 2 and (V, gV ) is a rank n negative definite sub-
bundle. Recall also that the characteristic classes of V characterize the connected
components of Repmax

(
Γ,SO0(2, n+ 1)

)
.

Set Pho(U ⊕V ) the bundle over Σ whose fiber at p ∈ Σ is the set Pho(Up⊕Vp)
of photons in Up ⊕ Vp.

We have the following:

Lemma 4.13. The canonical projection π : Pho(U ⊕ V ) −→ Σ turns Pho(U ⊕
V ) into a Pho(R2,n)-bundle. Moreover, the isomorphism class of the Pho(R2,n)-
bundle is characterized by the degree of U and the topological type of V .

Proof. The first point is obvious. To prove to second point, note that the prin-
cipal O(2, n)-bundle associated to the Pho(R2,n)-bundle π : Pho(U ⊕ V ) → Σ
corresponds to the reduction of structure group given by U⊕ V ⊂ E. This bundle
reduces to a SO(2)×O(n) bundle whose topological type is given by the degree of
U (that is 2g − 2) and the topological type of V . �

We denote by Pho(E) =
(
Σ̃ × Pho(R2,n+1)

)
/Γ the flat Pho(R2,n+1)-bundle

over Σ associated to ρ. The fiber of Pho(E) over p ∈ Σ is the set of photons in
Ep. By Subsection 4.3, a photon structure on Pho(U ⊕V ) with holonomy ρ ◦π∗ is
given by a section s ∈ Ω0

(
Pho(U ⊕ V ), π∗Pho(E)

)
which is transverse to the flat

structure.
Using the canonical inclusion U ⊕ V ⊂ E, one can define a tautological section

s ∈ Ω0
(
Pho(U ⊕ V ), π∗Pho(E)

)
of the bundle π∗Pho(E) → Pho(U ⊕ V ) by

including a photon ϕ ⊂ Up ⊕ Vp into Ep, for p ∈ Σ.

Proposition 4.14. The section s introduced above defines a fibered photon struc-
ture on Pho(U ⊕ V ) of holonomy ρ.

Proof. By construction, s maps bijectively the fiber of Pho(U ⊕ V ) over p ∈ Σ to
the set of photons in Up ⊕ Vp = `⊥p . In particular, for any x = (p, ϕ) ∈ Pho(U ⊕
V ), dsx restricts to an isomorphism between T vxPho(U ⊕ V ) and Ts(x)Pho(`⊥p ) ⊂
Ts(x)Pho(Ep).

The orthogonal projection on `p defines a map P`p : Ts(x)π
∗Pho(E)→ Hom(ϕ, `p).

By Lemma 4.9, s is transverse to the flat structure if the post-composition of the
restriction of dsx to ThxPho(U ⊕ V ) with P`p is injective.

From Subsection 2.4, the cyclic Higgs bundle associated to ρ splits as

(E ,Φ) =
L 1 // I 1 // L−1

βww⊕Vβ†

ff
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where I = ΛnV is a square root of the trivial bundle and L = IK. Moreover, this
splitting is orthogonal with respect to the Hermitian metric h solving the Higgs
bundle equations. In particular, for E = I ⊕ L ⊕ L−1 ⊕ V, we have

h =


hI

hL
h−1
L

hV


where hI (respectively hL and hV) is a Hermitian metric on I (respectively L and
V). The anti-linear involution fixing Eρ preserves I, L ⊕ L−1 and V. The (1, 0)
part ∇1,0 of the flat connection ∇ = A+ Φ + Φ∗ (where A is the Chern connection
of h and Φ∗ = Φ∗h) is written

∇1,0 =


A1,0
I 1 0 0

0 A1,0
L 0 η

1 0 A1,0
L−1 0

0 0 η† A1,0
V


while the (0, 1)-part ∇0,1 writes

∇0,1 =


∂I 0 1∗ 0

1∗ ∂L 0 0

0 0 ∂L−1 (η†)∗

0 η∗ 0 ∂V


where η∗ is the (0, 1)-form dual to η ∈ Ω0,1

(
X,Hom(L−1,V)

)
, where the dual is

taken using h−1
L and hV (and similarly for 1∗ and (η†)∗).

Let ε be a local frame of L with hL(ε, ε) = 1, and λ : E → E be the anti-linear
involution associated to h as in Theorem 2.18. The bundle U = Fix

(
λ|L⊕L−1

)
is

locally generated by the orthonormal frame 1√
2
e1,

1√
2
e2 where{

e1 = ε+ λ(ε)
e2 = i(ε− λ(ε))

.

Identifying a photon ψ ⊂ U ⊕ V with the graph of a linear map ϕ : U → V ,
the image of the section s is given by the sub-bundle generated by ξ1 and ξ2 where
ξi = ei + ϕ(ei) ∈ U ⊕ V .

We thus get

ξ1 =


0
1
1
ϕ(e1)

 , ξ2 =


0
i
−i
ϕ(e2)

 .

In a local holomorphic coordinates z, denoting by pI : E −→ I the orthogonal
projection, we obtain 

pI(∇∂zξ1) = 1(∂z)

pI(∇∂zξ1) = 1∗(∂z)

pI(∇∂zξ2) = i1(∂z)

pI(∇∂zξ2) = −i1∗(∂z)

.

where 1 ∈ Ω1,0
(
X,Hom(I,L)

)
and 1∗ is the dual of 1 with respect to the Hermitian

metrics on I and L.
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In particular, the post-composition of the restriction of ds to T vPho(U ⊕ V )
with the projection on ` is given by the matrix(

1(∂z) i1(∂z)

1∗(∂z) −i1∗(∂z)

)
.

Since the determinant of this matrix is nowhere vanishing, s is transverse to the flat
structure. Finally, note that the section s maps Pho(U ⊕ V )p to Pho(`⊥p ), so the
associated surface defined by equation 14 is the maximal one which is space-like. �

The case SO0(2, 3). For the case of SO0(2, 3), one can say more about the topology
of Pho(U ⊕ V ). Recall from Remark 2.33 that the space of maximal SO0(2, 3)-
representations decomposes as⊔

sw1 6=0, sw2

Repmaxsw1,sw2
(Γ,SO0(2, 3)) t

⊔
0≤d≤4g−4

Repmaxd (Γ,SO0(2, 3)),

and that the components
⊔

0<d≤4g−4

Repmaxd (Γ,SO0(2, 3)) are called Gothen compo-

nents while the rest of the components are called reducible components.
By Theorem 2.30, a flat vector bundle E with holonomy representation ρ ∈

Repmax(Γ,SO0(2, 3)) splits orthogonally as E = U ⊕ ` ⊕ V where ` is a negative
definite line sub-bundle, U is an oriented positive definite rank two bundle canoni-
cally identified with TΣ and V = (U ⊕ `)⊥. In this case, the post-composition by
elements of O(2) turns the iterated sphere bundle Pho(U⊕V )→ Σ into a principal
O(2)-bundle with the same first and second Stiefel-Whitney classes as V.

Lemma 4.15. The total space of the Pho(R2,2)-bundle Pho(U ⊕ V )→ Σ is con-
nected if and only if the first Stiefel-Whitney class of V is non-zero.

Proof. The splitting U ⊕V gives a reduction of the principal O(2, 2)-bundle under-
lying Pho(U ⊕ V ) to a principal SO(2)×O(2)-bundle. The stabilizer of a photon
in R2,2 under the action of SO(2)×O(2) is conjugated to the diagonal embedding
of SO(2), which is a connected subgroup. Therefore, Pho(U ⊕ V ) is connected if
and only if the principal SO(2)×O(2)-bundle is connected. This happens exactly
when the first Stiefel-Whitney class of V is non-zero. �

Recall that, for each maximal SO0(2, 3)-representation, the associated fibered
photon structure on Pho(U ⊕ V ) gives rise to a ρ-equivariant injective developing
map dev : Σ̃ × Pho(R2,2) → Pho(R2,3) which sends each fiber bijectively onto a
copy of Pho(R2,2). In particular, the image of dev has two connected components.
The geometry of the quotient ρ(Γ)\dev(Σ̃×Pho(R2,2)) is given by the following:

Lemma 4.16. Let ρ be a maximal SO0(2, 3)-representation and Pho(U ⊕ V ) be
the associated Pho(R2,2)-bundle.

• If ρ is in the Gothen component Repmaxd (Γ,SO0(2, 3)), or in the reducible
component Repmax0 (Γ,SO0(2, 3)), then Pho(U ⊕V ) is the disjoint union of
two circle bundles with degrees 2g − 2 + d and 2g − 2− d.

• If ρ is in the reducible component Repmaxsw1,sw2
(Γ,SO0(2, 3)), then Pho(U ⊕

V ) is connected.

Proof. In the first case, the first Stiefel–Whitney class of V vanishes and we can
thus choose an orientation of V such that deg(V ) = d ≥ 0. The two connected
components of Pho(U ⊕ V ) are then given by the graphs of linear isometries ϕ :
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U → V that preserve and reverse the orientation respectively. We respectively call
them Pho+(U ⊕ V ) and Pho−(U ⊕ V ).

The complex structure JU : U −→ U given by the rotation of angle π/2 defines
a canonical identification between U and Ker(JU − iId) ∼= K−1 ⊂ U ⊗ C. In a
same way, the complex structure JV : V −→ V identifies V with a holomorphic
line sub-bundle N ⊂ V ⊗ C, and N has degree d. Under these identifications,
Pho+(U ⊕ V ) corresponds to unit vectors in Hom(K−1,N ) = KN . Therefore, the
degree of Pho+(U ⊕ V ) is 2g− 2 + d. In the same way, one gets that the degree of
Pho−(U ⊕ V ) is 2g − 2− d.

In the second case, the first Stiefel-Whitney class of V is non-zero, hencePho(U⊕
V ) is connected by Lemma 4.15. �

4.4. Einstein structures for SO0(2, 3)-Hitchin representations. Here we prove
Theorem 4.2, namely that one can to any SO0(2, 3)-Hitchin representation a max-
imally fibered conformally flat Lorentz structure on the unit tangent bundle of Σ .
More generally, we construct these structures for special SO0(2, 3) representations
which give rise to cyclic Higgs bundles.

Definition 4.17. A conformally flat Lorentz structure (CFL structure) on a three
dimensional manifoldM is a (G,X)-structure with G = SO0(2, 3) and X = Ein1,2.

A space-like circle in Ein1,2 is the intersection of a 3-dimensional linear subspace
of R2,3 of signature (2, 1) with Ein1,2. The set of space-like circles in Ein1,2 is the
pseudo-Riemannian symmetric space

Gr(2,1)(R2,3) := SO0(2, 3)/S(O(2, 1)×O(2)).

Definition 4.18. A CFL structure on a circle bundle π : M −→ Σ is called fibered
if the developing map sends each fiber onto a space-like circle in Ein1,2 and the
holonomy is trivial along the fiber.

Two fibered CFL structures onM are equivalent is there exists a diffeomorphism
f : M → M isotopic to the identity giving an equivalence of

(
SO0(2, 3),Ein1,2

)
-

structures (see Definition 4.3) and moreover, f preserves the fibers.

In particular, the holonomy of a fibered space-like structure can thus be written
as ρ◦π∗ where ρ : Γ→ SO0(2, 3). Also, in a similar way to fibered photon structures,
one can associate to a fibered CFL structure on M a ρ-equivariant map

Ψ : Σ̃ −→ Gr(2,1)(R2,3).

The map Ψ sends a point x ∈ Σ̃ to the element in Gr2,1(R2,3) corresponding to the
space-like circle dev(π−1(x)).

Definition 4.19. A fibered CFL structure will be called maximal if Ψ(Σ̃) is a
space-like extremal surface.

Note that, up to the action of an element g ∈ SO0(2, 3), the surface Ψ(Σ̃) only
depends on the equivalence class of the fibered CFL structure.

Consider a representation ρ ∈ Rep
(
Γ,SO0(2, 3)

)
such that there exists a Rie-

mann surface structure X ∈ T (Σ) satisfying the property that the associated
SO0(2, 3)-Higgs bundle (E ,Φ) is cyclic and has the form
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(E ,Φ) = KL
1

66 L
β

55 O
β

33 L−1

γ

tt

1
11K−1L−1

γ

tt

where L is a holomorphic line bundle of degree 0 ≤ d ≤ 2g−2 and β ∈ H0(X,L−1K)
is non-zero. In that case, the splitting E = KL⊕L⊕O⊕L−1⊕K−1L−1 is orthogonal
with respect to the Hermitian metric h solving the Higgs bundle equations. Note
that, Hitchin representations satisfy this property with L = K.

The associated anti-linear involution λ : E −→ E fixing the flat SO0(2, 3)-bundle
E fixes O, L ⊕ L−1 and KL⊕K−1L−1, and one gets a splitting

E = U ⊕ `⊕ V,

where ` = Fix(λ|O) is trivial, U = Fix(λ|L⊕L−1) and V = Fix(λ|KL⊕K−1L−1).
Let π : M −→ Σ be the circle bundle of Euler class d. Consider a tautological

section s2 : M −→ π∗U normalized so that ‖s2‖2 = 1 where the norm is taken
with respect to the signature (2, 3) metric on π∗E. If s1 is the section of the trivial
line sub-bundle π∗` normalized such that ‖s1‖2 = −1, then the non-zero section
s = s1 + s2 has zero norm. The section s thus defines a section σ of the flat
homogeneous bundle π∗Ein(E) where

Ein(E) :=
(
Pρ ×Ein1,2

)
/SO0(2, 3)

and Pρ is the flat SO0(2, 3)-bundle with holonomy ρ. More concretely, the fiber of
π∗Ein(E) over x ∈M is the set of isotropic vectors in (π∗E)x.

Proposition 4.20. The section σ ∈ Ω0
(
M,π∗Ein(E)

)
introduced above defines a

maximally fibered CFL structure on M .

Proof. In the splitting E = KL⊕L⊕O⊕L−1⊕K−1L−1, the Higgs field Φ and its
dual Φ∗ with respect to h have the following expression:

Φ =


0 0 0 γ 0
1 0 0 0 γ
0 β 0 0 0
0 0 β 0 0
0 0 0 1 0

 and Φ∗ =


0 1∗ 0 0 0
0 0 β∗ 0 0
0 0 0 β∗ 0
γ∗ 0 0 0 1∗

0 γ∗ 0 0 0

 ,

where β∗ ∈ Ω0,1
(
X,Hom(O,L)

) ∼= Ω0,1
(
X,Hom(L−1,O)

)
is the form dual to β

using the Hermitian metric on L and O (and similarly for 1∗ and γ∗).
Consider a local chart (z, θ) on Σ̃ × S1, where z is holomorphic. In this chart,

the sections s1 of π∗` and s2 of π∗U defined above write

s1 =


0
0
1
0
0

 and s2 =
1√
2


0
µ−1eiθ

0
µe−iθ

0

 ,
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where µ is the norm of the local section


0
eiθ

0
0
0

 with respect to π∗h. In particular,

if l is the local section of π∗L corresponding to eiθ, then the restriction of π∗h to
π∗(L ⊕ L−1) is locally given by

π∗h|π∗(L⊕L−1) = µ2l−1 ⊗ l−1
+ µ−2l ⊗ l.

Writing the flat connection ∇ = A+ Φ + Φ∗ (where A = d+ ∂ log h is the Chern
connection of (π∗E , π∗h)), one obtains

∇s1 =


0
β∗(s1)
0
β(s1)
0

 .

The calculations for s2 are more tedious. We get

A∂θs2 =
1√
2


0
iµ−1eiθ

0
−iµe−iθ
0

 , A∂zs2 =
1√
2


0
µ−2∂ze

iθµ
0
−∂zµe−iθ
0

 , A∂zs2 =
1√
2


0

−µ−2∂zµe
iθ

0

∂zµe
−iθ

0

 ,

and

Φ(∂z)(s2) =
1√
2


γ(∂z)(µe

−iθ)
0
β(∂z)(µ

−1eiθ)
0
1(∂z)(µe

−iθ)

 , Φ∗(∂z)(s2) =
1√
2


1∗(∂z)(µe

iθ)
0

β∗(∂z)(µ
−1e−iθ)

0

γ∗(∂z)(µe
iθ)

 .

So finally, using s = s1 + s2, we get

∇∂zs =
1√
2


γ(∂z)(µe

−iθ)
µ−2∂ze

iθµ
β(∂z)(µ

−1eiθ)

−∂zµe−iθ +
√

2β(∂z)(s1)
1(∂z)(µe

−iθ)

 ,

∇∂zs =
1√
2


1∗(∂z)(µe

iθ)

−µ−2∂zµe
iθ +
√

2β∗(∂z)(s1)

β∗(∂z)(µ
−1e−iθ)

∂zµe
−iθ

γ∗(∂z)(µe
iθ)
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and

∇∂θs =
1√
2


0
iµ−1eiθ

0
−iµe−iθ
0

 .

The section σ ∈ Ω0
(
M,π∗Ein(E)

)
is transverse to the flat structure if and only

if the sections {s,∇∂zs,∇∂zs,∇∂θs} generate a 4-dimensional space at each point.
In particular the non-vanishing of the determinant

∣∣s1 s2 ∇∂zs ∇∂zs ∇∂θs
∣∣ is a

sufficient condition.
The three vectors {s1, s2,∇∂θs} span the bundle π∗(L⊕O⊕L−1) at each point.

In particular, the determinant
∣∣s1 s2 ∇∂zs ∇∂zs ∇∂θs

∣∣ vanishes exactly when the
first and last component of {∇∂zs, ∇∂zs} are proportional, that is when ‖γ‖2 =

‖1‖2.
Because the section γ ∈ H0(X,K2L2) is holomorphic, we have

∆ log ‖γ‖2 = −2FKL,

where FKL is the curvature of the bundle KL with respect to the Hermitian metric
h. By the Higgs bundle equation, FKL = ‖1‖2 − ‖γ‖2 and we obtain

∆ log ‖γ‖2 = 2‖γ‖2 − 2‖1‖2.

The maximum principle applies: at a maximum of ‖γ‖2, one has ‖γ‖2 < ‖1‖2 and
so ‖1‖2 6= ‖γ‖2 on Σ. In particular, σ ∈ Ω0

(
M,π∗Ein(E)

)
defines a CFL structure

on M .
Note also that the associated developing map sends the fiber of M over x to

the space-like circle corresponding to the signature (2, 1) linear subspace `x ⊕ Ux,
so the CFL structure is fibered. Finally, the corresponding equivariant map Ψ :

Σ̃ −→ Gr2,1(R2,3) is the first Gauss map of the maximal surface u : Σ̃ −→ H2,2.
By Proposition 3.12, Ψ is extremal. �

Remark 4.21. For L = K, the above construction gives maximally fibered CFL
structures on T 1Σ whose holonomy factors through a Hitchin representation. But
note also that, for any d ∈ Z with |d| < 2g − 2, our construction gives ex-
amples of maximally fibered CFL structures on a degree d circle bundle over Σ
whose holonomy factor through representations in the connected component of
Rep(Γ,SO0(2, 3)) of Toledo invariant d. Unfortunately, for |d| < 2g − 2, these rep-
resentations do not form an open domain of the character variety and we do not
know how to characterize the representations arising this way. One can show that
these representations do not come from representations in SO(2, 2), so these CFL
structures do not come from AdS structures on the circle bundle. It would be in-
teresting to understand whether these representations are Anosov and whether the
Einstein structures constructed above are deformation of anti-de Sitter structures.

5. Relation with Guichard-Wienhard construction

In this section, we show that both the fibered photon structure of Theorem 4.1
and the maximal CFL structures of Theorem 4.2 agree with the geometric structures
constructed by Guichard-Wienhard in [GW12]. As a corollary, we describe the
topology of the geometric structures of Guichard-Wienhard.
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5.1. Geometric structures “à la Guichard-Wienhard”. Here we explain the
construction of geometric structures in [GW12] in the case of Anosov represen-
tations of a surface group in SO0(2, n + 1). Let P1 and P2 be respectively the
stabilizer of an isotropic line and of an isotropic 2-plane in R2,n+1. In particu-
lar, SO0(2, n + 1)/P1

∼= Ein1,n is the Einstein Universe and SO0(2, n + 1)/P2
∼=

Pho(R2,n+1) is the set of photons in R2,n+1.
Given ρ ∈ Rep(Γ,SO0(2, n+ 1)) a representation which is Pi-Anosov (i = 1, 2),

there exists a continuous ρ-equivariant map

ξi : ∂∞Γ −→ SO0(2, n+ 1)/Pi.

The following was established in [Lab06] for Hitchin representations, in [BILW05]
for maximal representations in Sp(2n,R), so using the existence of a tight embed-
ding ι : SO0(2, n+ 1) ↪→ Sp(2m,R) for some m ∈ N (see [HP14]), we get:

Proposition 5.1. If ρ ∈ Rep(Γ,SO0(2, n+ 1)) is a maximal representation then it
is P1-Anosov. If ρ ∈ Rep(Γ,SO0(2, 3)) is a Hitchin representation, then ρ is both
P1-Anosov and P2-Anosov.

If ρ is P1-Anosov, define the subsets K2
ρ ⊂ Pho(R2,n+1) by

K2
ρ :=

{
V ∈ Pho(R2,n+1) | ξ1(x) ⊂ V for some x ∈ ∂∞Γ

}
,

if ρ is P2-Anosov define the subsets K1
ρ ⊂ Ein1,n by

K1
ρ :=

{
` ∈ Ein1,n | ` ⊂ ξ2(x) for some x ∈ ∂∞Γ

}
.

Note that K2
ρ is homeomorphic to ∂∞Γ × Sn−1. If ρ ∈ Rep(Γ,SO0(2, 3)) a P2-

Anosov representation, K1
ρ is homeomorphic to ∂∞Γ× S1. The following is proved

in [GW12]:

Theorem 5.2. If ρ ∈ Rep
(
Γ,SO0(2, n+ 1)

)
is P1-Anosov, then ρ(Γ) acts properly

discontinuously and co-compactly on the set

Ω2
ρ = Pho(R2,n+1) \K2

ρ .

Also, if ρ ∈ Rep
(
Γ,SO0(2, n+ 1)

)
is P2-Anosov, then ρ(Γ) acts properly discontin-

uously and co-compactly on the set

Ω1
ρ = Ein1,n \K1

ρ .

Moreover, the topology of the quotient ρ(Γ)\Ωiρ remains constant as the represen-
tation ρ is varied continuously (Theorem 9.2 of [GW12]).

5.2. Equivalence of the photon structures. Here we prove that the fibered
photon structures constructed in Theorem 4.1 are equivalent to those of Guichard-
Wienhard.

Theorem 5.3. Let ρ be a maximal representation from Γ to SO0(2, n + 1). Let
Pho(U ⊕ V ) be the iterated sphere bundle of Section 4.3 and dev the developing
map of the photon structure on Pho(U ⊕V ) constructed in Proposition 4.14. Then
dev takes values in Ωρ and induces a diffeomorphism from Pho(U ⊕V ) to ρ(Γ)\Ω2

ρ

Proof. Let ρ ∈ Repmax(Γ,SO0(2, n + 1)) be a maximal representation, denote by
u : Σ̃→ H2,n the ρ-equivariant maximal surface and by ξ : ∂∞Γ→ Ein1,n ∼= ∂H2,n

the ρ-equivariant continuous map given by the Anosov property of ρ. Recall that
the boundary of u(Σ̃) corresponds to ξ(∂∞Γ). We will show that the developing
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map of the fibered photon structure of Theorem 4.1 maps bijectively onto the
Guichard-Wienhard domain Ω2

ρ.
In the construction of the fibered photon structure of Theorem 4.1, the develop-

ing map sends the fiber of the iterated sphere bundle over a point x ∈ Σ̃ bijectively
to the set of photons contained in the orthogonal of u(x) in R2,n+1. By Lemma
3.20, the boundary of u(Σ̃) does not intersect u(x)⊥ for any x ∈ Σ̃. In particular,
the developing map of the space-like fibered photon structure associated to ρ is
contained in the domain Ω2

ρ.
For the other inclusion, suppose V ∈ Pho(R2,n+1) is a photon and denote its

orthogonal by V ⊥. The restriction of the quadratic form q to V ⊥ is non-positive,
and vanishes exactly on the subspace V . Thus, the subspace V ⊥ can be approxi-
mated by a sequence Wk of rank (n+ 1) negative definite subspaces. By Corollary
3.17, each plane Wk intersects the surface u(Σ̃) in exactly one point. Thus, V ⊥

intersects either u(Σ̃) or its boundary. This gives rise to a dichotomy:
• If V ⊥ intersects u(Σ̃) at a point x, then V is contained in Pho(x⊥) and in

the image of developing map of the fibered photon structure.
• If V ⊥ intersects the boundary of u(Σ̃) at a point ξ(x), then V contains the

isotropic line ξ(x), and so V belongs to K2
ρ .

Therefore, the developing map of the fibered photon structure from Theorem 4.1
maps surjectively onto Ω2

ρ. �

The following corollary is immediate:

Corollary 5.4. If ρ : Γ −→ SO0(2, n + 1) is a maximal representation, then the
quotient ρ(Γ)\Ω2

ρ of the Guichard-Wienhard discontinuity domain is homeomorphic
to an iterated sphere bundle over Σ and the topology of the bundle characterizes the
connected component of ρ.

By Lemma 4.16, for SO0(2, 3) we can say a little more.

Corollary 5.5. For ρ : Γ −→ SO0(2, 3) maximal, the quotient ρ(Γ)\Ω2
ρ of the

Guichard-Wienhard discontinuity domain
• is homeomorphic to a connected O(2)-bundle over Σ with Steifel-Whitney
classes (sw1, sw2) if ρ ∈ Repmaxsw1,sw2

(Γ,SO0(2, 3))
• is homeomorphic to the disjoint union of two circle bundles of degree 2g −

2 + d and 2g − 2− d if ρ ∈ Repmaxd (Γ,SO0(2, 3)).

The Hitchin component. For a representation ρ ∈ Hit
(
Γ,SO0(2, 3)

)
in the

Hitchin component, we have more information about the quotient ρ(Γ)\Ω2
ρ. More

explicitly, Guichard and Wienhard proved in [GW08] that the quotient of the do-
main of discontinuity by a Hitchin representation in PSp(4,R) gives rise to non-
equivalent (PSp(4,R),RP3)-structures, one being convex, the other not. Using the
isomorphism PSp(4,R) ∼= SO0(2, 3), the homogeneous space Pho(R2,3) of photons
in R2,3 is identified with the space of lines in (R4, ω), where ω is a symplectic
form on R4. In particular, a (PSp(4,R),RP3)-structure is equivalent to a photon
structure. We show the following

Proposition 5.6. Given a Hitchin representation ρ ∈ Hit(Γ,SO0(2, 3)), the photon
structure on the degree 6g− 6 circle bundle SO(U, V ) constructed in Subsection 4.3
is equivalent to the non-convex projective structure described above, while the photon
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structure on the degree −2g + 2 circle bundle SO(U, V ) corresponds to the convex
one.

Proof. We will prove the result for the Fuchsian locus, which will give the result
for the Hitchin component by continuity. Given j : Γ −→ PSL2(R) a Fuchsian
representation, let ρ := mirr ◦ j ∈ Hit(Γ,PSp(4,R)) be the image of j by the irre-
ducible representationmirr : PSL2(R) −→ PSp(4,R) corresponding to the action of
PSL2(R) on the space R3[X,Y ] os homogeneous polynomials of degree 3. Here, we
identify R2 with R1[X,Y ] and R4 with R3[X,Y ]. The convex connected component
of Ω2

ρ corresponds to those polynomials having a real root and two complex conju-
gate ones while the non-convex component corresponds to the set of polynomials
having 3 distinct real roots.

The uniformization u : Σ̃ −→ H2 associated to j gives an equivariant iden-
tification T 1Σ̃ ∼= ∂∞H2(3) where ∂∞H2(3) is the set of pairwise distinct triple
(x−, xt, x+) ∈ (∂∞H2)3 that are positively oriented. Indeed, given (x, v) ∈ T 1Σ̃,
there is a unique triple (x−, xt, x+) ∈ ∂∞H2(3) such that the geodesic γ passing
through dux(v) intersects ∂∞H2 in the future at x+, in the past at x− and the geo-
desic orthogonal to γ at x intersects the boundary at xt with (x−, xt, x+) positively
oriented.

The developing map dev′ corresponding to the non-convex projective structure
is given by

dev′ : T 1Σ̃ −→ RP3

([P1], [P2], [P3]) 7−→ [P1P2P3]
.

Note here that dev′ is invariant under the Z3-action on T 1Σ̃ generated by
([P1], [P2], [P3]) → ([P2], [P3], [P1]). In particular, dev′ descends to a ρ-equivariant
injective map

dev∗ : T 1Σ̃/Z3 −→ Ω2
ρ.

The quotient of the image of dev∗ by ρ(Γ)is thus a circle bundle of degree (6g− 6).
Note also that the developing map dev : T 1Σ̃ −→ Ω2

ρ corresponding to the convex
foliated projective structure of Guichard–Wienhard is injective so the associated
geometric structure is equivalent to the one on SO(U, V ). �

5.3. Equivalence of Einstein structures. For a Hitchin representation ρ : Γ→
SO0(2, 3) there is a Guichard-Wienhard domain Ω1

ρ in Ein1,2 by Proposition 5.1.
Guichard–Wienhard’s theorem (Theorem 5.2) implies that the action of ρ(Γ)

on Ω1
ρ is properly discontinuous and co-compact. Actually, one can be a bit

more precise. Mimicking their construction of projective structures associated to
Hitchin representations into SL(4,R) (see [GW08]), one can give2 a ρ-equivariant
parametrization of Ω1

ρ by the set ∂∞Γ(3) of oriented triples of distinct points in
∂∞Γ. It follows that ρ(Γ)\Ω1

ρ is homeomorphic to T 1Σ. However, the circle bundle
structure is not appearing in this construction.

Here, we prove that the conformally flat 3-manifold associated to ρ by Theorem
4.2 is isomorphic (as a conformally flat 3-manifold) to ρ(Γ)\Ω1

ρ.

2This construction was done in some working notes that Guichard and Wienhard kindly shared
with us.
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Theorem 5.7. Let ρ : Γ → SO0(2, 3) be a Hitchin representation. Then the
developing map devρ constructed in Section 4.4 is a global homeomorphism from
T 1Σ̃ to Ω1

ρ.

The proof is less straightforward than that of Theorem 5.3. We first prove the
following lemma, which settles the case when ρ is Fuchsian, and then argue by
continuity, using the Ehresmann–Thurston principle.

Lemma 5.8. Suppose that ρ = mirr ◦ j, where j : Γ → PSL(2,R) is a Fuchsian
representation and mirr : PSL(2,R) → SO0(2, 3) is the irreducible representation.
The developing map devρ constructed in Section 4.4 is a diffeomorphism onto Ω1

ρ.

Lemma 5.8 shows in particular that for ρ0 = mirr ◦ j, the manifold ρ0(Γ)\Ω1
ρ0 is

homeomorphic to T 1Σ. Now, when ρ varies continuously, the topology of ρ(Γ)\Ω1
ρ

does not vary, and its Einstein structure varies continuously by [GW12, Theorem
9.2]. Therefore, the developing map devρ constructed in the proof of Theorem
4.2 and the identification of T 1Σ with ρ(Γ)\Ω1

ρ given by Theorem 9.2 of [GW12]
give two Einstein structures on T 1Σ with the same holonomy ρ and depending
continuously on ρ. Since the two Einstein structures coincide at ρ0 = mirr ◦ j, they
coincide on the whole connected component of ρ0 according to the Ehresmann–
Thurston principle. This concludes the proof of Theorem 5.7.

Proof of Lemma 5.8. The specificity of the Fuchsian case is that the developing
map extends as a PSL(2,R)-equivariant map from T 1H2 to Ein1,2.

Let us recall that the irreducible representation of SL(2,R) in dimension n+ 1 is
given by the action of SL(2,R) on the space Rn[X,Y ] of homogeneous polynomials
of degree n in two variables X and Y . This action preserves the bilinear form Qn
given in the coordinate system

(Xn, Xn−1Y, . . . ,XY n−1, Y n)

by the matrix 
an,0

−an,1
. .
.

(−1)n−1an,n−1

(−1)nan,n


where an,k = k!(n−k)!

n! .
This bilinear form is anti-symmetric for n odd and symmetric of signature

(2k, 2k + 1) for n = 4k + 1. In particular, for n = 2, the quadratic form −2Q2

is the discriminant of quadratic polynomials, and this representation gives the iso-
morphism PSL(2,R) ' SO0(2, 1). The hyperbolic plane H2 thus identifies with
the projectivisation of the set of quadratic polynomials with negative discriminant
(that is, scalar products on R2) while ∂∞H2 identifies with the projectivisation of
the set of quadratic polynomials with vanishing discriminant (that is, squares of
linear forms).

Let j : Γ → PSL(2,R) be a Fuchsian representation. We identify j with its
composition with the isomorphism PSL(2,R) ' SO0(2, 1). Now, R2,3 identifies
with (R4[X,Y ],−Q4), and the irreducible representation described above is the
representation mirr.
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In this setting, the boundary map ξ0 : ∂∞Γ → Ein1,2 given by the Anosov
property of ρ0 is identified with the PSL(2,R)-equivariant map

ξ0 : ∂∞H2 → Ein1,2

[L2] 7→ [L4] .

(Here, [L2] denotes the projective class of the square of a linear form on R2.)
Moreover, given a point [L2] in ∂∞H2, the photon ξ1([L2]) is the tangent to ξ0 at

L. It is thus the projectivisation of the space of polynomials of the form L3L′, where
L′ is a linear form. We conclude that the domain Ω1

ρ0 of Guichard and Wienhard
is the complement in Ein1,2 of the set of polynomials having a triple root.

On the other side, the ρ0-invariant maximal surface in H2,2 is the image of the
PSL(2,R)-equivariant map

f : H2 → H2,2

[P ] 7→ [P 2] ,

referred to as the Veronese surface in [Ish88]. (Here, [P ] denotes the projective
class of a positive definite quadratic form on R2.)

Let P be a positive definite quadratic form on R2. The tangent space to this
maximal surface at the point f([P ]) is the projective space of polynomials of the
form PQ, with Q ∈ R2[X,Y ]. Since none of these polynomials has a triple root,
the intersection of this tangent space with Ein1,2 is contained in the domain Ω1

ρ0 .
By construction of the developing map devρ0 it follows that devρ0 takes values into
Ω1
ρ0 .
Let [P ] and [Q] be two distinct points in H2. Then the intersection between

the tangent spaces to f(H2) at f([P ]) and f([Q]) is the point [PQ], which never
belongs to Ein1,2. Indeed, up to applying an element of PSL(2,R), one can assume
that [P ] = [X2 + Y 2] and [Q] = [aX2 + bY 2]. One easily compute that

Q4(PQ) =
1

6
(a+ b)2 + 2ab ,

which never vanishes when a and b are of the same sign. By construction, it follows
that devρ0 is injective.

Let us finally prove that devρ0 is surjective onto Ω1
ρ0 . Let P be a non-zero

polynomial of degree 4 such Q4(P ) = 0. Suppose that [P ] is not in the image of
devρ0 . Then P is not divisible by a positive definite quadratic form and P thus
splits as a product of 4 linear forms. If all these linear forms are co-linear, then [P ]
belongs to the image of ξ0 and thus not to Ω1

ρ0 . Otherwise, one can assume (up to
applying an element of PSL(2,R)) that P has the form

XY (aX + bY )(cX + dY ) .

One then computes that

Q4(P ) =
1

6

(
(ad)2 + (bc)2 − adbc

)
.

Since the polynomial A2 +B2−AB is positive definite the fact that Q4(P ) vanishes
implies that both ad and bc vanish, from which we easily deduce that P is divisible
by X3 or Y 3. Therefore, P belongs to the complement of Ω1

ρ0 .
By contraposition, we deduce that, if [P ] belongs to Ω1

ρ0 , then P is divisible by a
positive definite quadratic form. Therefore, the developing map devρ is surjective
onto Ω1

ρ0 . This concludes the proof of Lemma 5.8. �
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