Improving galaxy morphologies for SDSS with Deep Learning

Abstract : We present a morphological catalogue for ∼670 000 galaxies in the Sloan Digital Sky Survey in two flavours: T-type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-types and a series of GZ2 type questions (disc/features, edge-on galaxies, bar signature, bulge prominence, roundness, and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from S0, where the T-type model is not so efficient. For the T-type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (>97 per cent), precision and recall values (>90 per cent), when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.
Type de document :
Article dans une revue
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2018, 476 (3), pp.3661-3676. 〈10.1093/mnras/sty338〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01791939
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mardi 15 mai 2018 - 09:48:50
Dernière modification le : mercredi 19 septembre 2018 - 01:33:30
Document(s) archivé(s) le : mardi 25 septembre 2018 - 18:52:35

Fichier

sty338.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

H Domínguez Sánchez, M. Huertas-Company, M. Bernardi, D Tuccillo, J.L. Fischer. Improving galaxy morphologies for SDSS with Deep Learning. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2018, 476 (3), pp.3661-3676. 〈10.1093/mnras/sty338〉. 〈hal-01791939〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

31