A. Laugesen and K. Helin, Chromatin Repressive Complexes in Stem Cells, Development, and Cancer, Cell Stem Cell, vol.14, issue.6, pp.735-51, 2014.
DOI : 10.1016/j.stem.2014.05.006

Y. Xue, J. Wong, G. Moreno, M. Young, J. Cote et al., NURD, a Novel Complex with Both ATP-Dependent Chromatin-Remodeling and Histone Deacetylase Activities, Molecular Cell, vol.2, issue.6, pp.851-61, 1998.
DOI : 10.1016/S1097-2765(00)80299-3

Y. Zhang, H. Ng, H. Erdjument-bromage, P. Tempst, A. Bird et al., Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation, Genes & Development, vol.13, issue.15, pp.1924-1959, 1999.
DOI : 10.1101/gad.13.15.1924

C. Laherty, W. Yang, J. Sun, J. Davie, E. Seto et al., Histone Deacetylases Associated with the mSin3 Corepressor Mediate Mad Transcriptional Repression, Cell, vol.89, issue.3, pp.349-56, 1997.
DOI : 10.1016/S0092-8674(00)80215-9

G. Humphrey, Y. Wang, V. Russanova, T. Hirai, J. Qin et al., Stable Histone Deacetylase Complexes Distinguished by the Presence of SANT Domain Proteins CoREST/kiaa0071 and Mta-L1, Journal of Biological Chemistry, vol.276, issue.9, pp.6817-6841, 2001.
DOI : 10.1074/jbc.M007372200

R. Kelly and S. Cowley, The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts, Biochemical Society Transactions, vol.63, issue.3, pp.741-750, 2013.
DOI : 10.1074/jbc.M109.081679

N. Bowen, N. Fujita, M. Kajita, and P. Wade, Mi-2/NuRD: multiple complexes for many purposes, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1677, issue.1-3, pp.1-352, 2004.
DOI : 10.1016/j.bbaexp.2003.10.010

A. Lai and P. Wade, Cancer biology and NuRD: a multifaceted chromatin remodelling complex, Nature Reviews Cancer, vol.16, issue.8, pp.588-96, 2011.
DOI : 10.1038/nrc3091

P. Mcdonel, I. Costello, and B. Hendrich, Keeping things quiet: Roles of NuRD and Sin3 co-repressor complexes during mammalian development, The International Journal of Biochemistry & Cell Biology, vol.41, issue.1, pp.108-124, 2009.
DOI : 10.1016/j.biocel.2008.07.022

A. Lebreton, G. Lakisic, V. Job, L. Fritsch, T. Tham et al., A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.331, issue.6022, pp.1319-1340, 2011.
DOI : 10.1126/science.1200120

URL : https://hal.archives-ouvertes.fr/cea-00819299

H. Bierne, T. Tham, E. Batsche, A. Dumay, M. Leguillou et al., Human BAHD1 promotes heterochromatic gene silencing, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.13826-13857, 2009.
DOI : 10.1073/pnas.0901259106

URL : https://hal.archives-ouvertes.fr/pasteur-00411478

M. Weimann, A. Grossmann, J. Woodsmith, Z. Ozkan, P. Birth et al., A Y2H-seq approach defines the human protein methyltransferase interactome, Nature Methods, vol.284, issue.4, pp.339-381, 2013.
DOI : 10.1093/embo-reports/kvf052

E. Libertini, A. Lebreton, G. Lakisic, M. Dillies, S. Beck et al., Overexpression of the Heterochromatinization Factor BAHD1 in HEK293 Cells Differentially Reshapes the DNA Methylome on Autosomes and X Chromosome, Frontiers in Genetics, vol.500, p.26648976, 2015.
DOI : 10.1038/nature12433

URL : https://hal.archives-ouvertes.fr/hal-01350961

M. Escamilla-del-arenal, S. Da-rocha, C. Spruijt, O. Masui, O. Renaud et al., Cdyl, a New Partner of the Inactive X Chromosome and Potential Reader of H3K27me3 and H3K9me2, Molecular and Cellular Biology, vol.33, issue.24, pp.5005-5025, 2013.
DOI : 10.1128/MCB.00866-13

D. Natale, M. Starovic, and J. Cross, Phenotypic Analysis of the Mouse Placenta, Methods Mol Med, vol.121, pp.275-93, 2006.
DOI : 10.1385/1-59259-983-4:273

D. Simmons, D. Natale, V. Begay, M. Hughes, A. Leutz et al., Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth, Development, vol.135, issue.12, pp.2083-91, 2008.
DOI : 10.1242/dev.020099

P. Coan, N. Conroy, G. Burton, and A. Ferguson-smith, Origin and characteristics of glycogen cells in the developing murine placenta, Developmental Dynamics, vol.387, issue.12, pp.3280-94, 2006.
DOI : 10.1002/dvdy.20981

R. Tesser, P. Scherholz, L. Do-nascimento, and S. Katz, Trophoblast glycogen cells differentiate early in the mouse ectoplacental cone: putative role during placentation, Histochemistry and Cell Biology, vol.312, issue.S2, pp.83-92, 2010.
DOI : 10.1007/s00418-010-0714-x

D. Huang, B. Sherman, and R. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2009.
DOI : 10.1038/nprot.2008.211

P. Coan, G. Burton, and A. Ferguson-smith, Imprinted genes in the placenta ??? A review, Placenta, vol.26, pp.10-20, 2005.
DOI : 10.1016/j.placenta.2004.12.009

D. Haig, Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting, Heredity, vol.14, issue.1971, pp.96-103, 2014.
DOI : 10.1098/rstb.2008.0238

L. Lefebvre, The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage, Reproductive BioMedicine Online, vol.25, issue.1, pp.44-57, 2012.
DOI : 10.1016/j.rbmo.2012.03.019

C. Millard, P. Watson, I. Celardo, Y. Gordiyenko, S. Cowley et al., Class I HDACs Share a Common Mechanism of Regulation by Inositol Phosphates, Molecular Cell, vol.51, issue.1, pp.57-67, 2013.
DOI : 10.1016/j.molcel.2013.05.020

N. Plaster, C. Sonntag, T. Schilling, and H. M. Rerea, REREa/Atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development, Developmental Dynamics, vol.131, issue.Pt 7, pp.1891-904, 2007.
DOI : 10.1002/dvdy.21196

L. Wang, B. Charroux, S. Kerridge, and C. Tsai, Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates, EMBO reports, vol.154, issue.6, pp.555-62, 2008.
DOI : 10.1242/dev.00908

M. Bantscheff, C. Hopf, M. Savitski, A. Dittmann, P. Grandi et al., Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes, Nature Biotechnology, vol.276, issue.3, pp.255-65, 2011.
DOI : 10.1038/nprot.2007.202

K. Armache, J. Garlick, D. Canzio, G. Narlikar, and R. Kingston, Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleosome at 3.0 A Resolution, Science, vol.334, issue.6058, pp.977-82, 2011.
DOI : 10.1126/science.1210915

N. Yang and R. Xu, Structure and function of the BAH domain in chromatin biology, Critical Reviews in Biochemistry and Molecular Biology, vol.21, issue.3, pp.211-232, 2013.
DOI : 10.3109/10409238.2012.742035

A. Lebreton, V. Job, M. Ragon, L. Monnier, A. Dessen et al., Structural Basis for the Inhibition of the Chromatin Repressor BAHD1 by the Bacterial Nucleomodulin LntA, mBio, vol.5, issue.1, pp.775-788, 2014.
DOI : 10.1128/mBio.00775-13

URL : https://hal.archives-ouvertes.fr/hal-01109386

Z. Ding, L. Gillespie, F. Mercer, and G. Paterno, The SANT Domain of Human MI-ER1 Interacts with Sp1 to Interfere with GC Box Recognition and Repress Transcription from Its Own Promoter, Journal of Biological Chemistry, vol.279, issue.27, pp.28009-28025, 2004.
DOI : 10.1074/jbc.M403793200

S. Rangwala and M. Lazar, Peroxisome proliferator-activated receptor ?? in diabetes and metabolism, Trends in Pharmacological Sciences, vol.25, issue.6, pp.331-337, 2004.
DOI : 10.1016/j.tips.2004.03.012

Y. Barak, Y. Sadovsky, and T. Shalom-barak, PPAR Signaling in Placental Development and Function, PPAR Research, vol.129, issue.12, pp.142082-18288278, 2008.
DOI : 10.1083/jcb.151.3.563

E. Maltepe, G. Krampitz, K. Okazaki, K. Red-horse, W. Mak et al., Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta, Development, vol.132, issue.15, pp.3393-403, 2005.
DOI : 10.1242/dev.01923

E. Rankin, J. Rha, M. Selak, T. Unger, B. Keith et al., Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism, Molecular and Cellular Biology, vol.29, issue.16, pp.4527-4565, 2009.
DOI : 10.1128/MCB.00200-09

P. Mccarthy, F. Mercer, M. Savicky, B. Carter, G. Paterno et al., Changes in subcellular localisation of MI-ER1??, a novel oestrogen receptor-?? interacting protein, is associated with breast cancer progression, British Journal of Cancer, vol.112, issue.4, pp.639-685, 2008.
DOI : 10.1038/sj.bjc.6604518

C. Lin, V. Vega, J. Thomsen, T. Zhang, S. Kong et al., Whole-genome cartography of estrogen receptor alpha binding sites, Plos Genetics, vol.3, issue.6, pp.867-85, 2007.

S. Ellison-zelski, N. Solodin, and E. Alarid, Repression of ESR1 through Actions of Estrogen Receptor Alpha and Sin3A at the Proximal Promoter, Molecular and Cellular Biology, vol.29, issue.18, pp.4949-58, 2009.
DOI : 10.1128/MCB.00383-09

J. Carroll, C. Meyer, J. Song, W. Li, T. Geistlinger et al., Genome-wide analysis of estrogen receptor binding sites, Nature Genetics, vol.8, issue.11, pp.1289-97, 2006.
DOI : 10.1038/ng1901

M. Kos, G. Reid, S. Denger, and F. Gannon, Minireview: Genomic Organization of the Human ER?? Gene Promoter Region, Molecular Endocrinology, vol.15, issue.12, pp.2057-63, 2001.
DOI : 10.1210/me.15.12.2057

F. Fuks, W. Burgers, N. Godin, M. Kasai, and T. Kouzarides, Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription, The EMBO Journal, vol.20, issue.10, pp.2536-2580, 2001.
DOI : 10.1093/emboj/20.10.2536

F. Fuks, P. Hurd, R. Deplus, and T. Kouzarides, The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase, Nucleic Acids Research, vol.31, issue.9, pp.2305-2317, 2003.
DOI : 10.1093/nar/gkg332

B. Lehnertz, Y. Ueda, A. Derijck, U. Braunschweig, L. Perez-burgos et al., Suv39h-Mediated Histone H3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin, Current Biology, vol.13, issue.14, pp.1192-200, 2003.
DOI : 10.1016/S0960-9822(03)00432-9

H. Li, T. Rauch, Z. Chen, P. Szabo, A. Riggs et al., The Histone Methyltransferase SETDB1 and the DNA Methyltransferase DNMT3A Interact Directly and Localize to Promoters Silenced in Cancer Cells, Journal of Biological Chemistry, vol.281, issue.28, pp.19489-500, 2006.
DOI : 10.1074/jbc.M513249200

Z. Ding, L. Gillespie, and G. Paterno, Human MI-ER1 Alpha and Beta Function as Transcriptional Repressors by Recruitment of Histone Deacetylase 1 to Their Conserved ELM2 Domain, Molecular and Cellular Biology, vol.23, issue.1, pp.250-258, 2003.
DOI : 10.1128/MCB.23.1.250-258.2003

J. Clements, F. Mercer, G. Paterno, and L. Gillespie, Differential Splicing Alters Subcellular Localization of the Alpha but not Beta Isoform of the MIER1 Transcriptional Regulator in Breast Cancer Cells, PLoS ONE, vol.10, issue.2, p.22384264, 2012.
DOI : 10.1371/journal.pone.0032499.g004

S. Li, G. Paterno, and L. Gillespie, Nuclear localization of the transcriptional regulator MIER1alpha requires interaction with HDAC1/2 in breast cancer cells, PLoS One, vol.8, issue.12, p.24376786, 2013.

H. Cedar and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms, Nature Reviews Genetics, vol.323, issue.5, pp.295-304, 2009.
DOI : 10.1038/nrg2540

A. Mazumdar, R. Wang, S. Mishra, L. Adam, R. Bagheri-yarmand et al., Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor, Nat Cell Biol, vol.3, issue.1, pp.30-37, 2001.

A. Bukovsky, M. Caudle, M. Cekanova, R. Fernando, J. Wimalasena et al., Placental expression of estrogen receptor beta and its hormone binding variant?comparison with estrogen receptor alpha and a role for estrogen receptors in asymmetric division and differentiation of estrogen-dependent cells, Reproductive Biology and Endocrinology, vol.1, issue.1, pp.36-12740031, 2003.
DOI : 10.1186/1477-7827-1-36

J. Fujimoto, Y. Nakagawa, H. Toyoki, H. Sakaguchi, E. Sato et al., Estrogen-related receptor expression in placenta throughout gestation, The Journal of Steroid Biochemistry and Molecular Biology, vol.94, issue.1-3, pp.1-367, 2005.
DOI : 10.1016/j.jsbmb.2004.12.030

E. Albrecht and G. Pepe, Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy, The International Journal of Developmental Biology, vol.54, issue.2-3, pp.2-3397, 2010.
DOI : 10.1387/ijdb.082758ea

Y. Gambino, P. Perez, A. Duenas, J. Calvo, J. Sanchez-margalet et al., Regulation of leptin expression by 17beta-estradiol in human placental cells involves membrane associated estrogen receptor alpha, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.4, p.22310000, 2012.
DOI : 10.1016/j.bbamcr.2012.01.015

G. Nie, Y. Li, K. Hale, H. Okada, U. Manuelpillai et al., Serine Peptidase HTRA3 Is Closely Associated with Human Placental Development and Is Elevated in Pregnancy Serum1, Biology of Reproduction, vol.74, issue.2, pp.366-74, 2006.
DOI : 10.1095/biolreprod.105.047324

H. Singh, S. Makino, Y. Endo, and G. Nie, Inhibition of HTRA3 stimulates trophoblast invasion during human placental development, Placenta, vol.31, issue.12, pp.1085-92, 2010.
DOI : 10.1016/j.placenta.2010.10.003

S. Sober, M. Reiman, T. Kikas, K. Rull, R. Inno et al., Extensive shift in placental transcriptome profile in preeclampsia and placental origin of adverse pregnancy outcomes, Scientific Reports, vol.57, issue.1, pp.13336-13346, 2015.
DOI : 10.1186/s13059-014-0550-8

K. Dynon, S. Heng, M. Puryer, Y. Li, K. Walton et al., HtrA3 as an Early Marker for Preeclampsia: Specific Monoclonal Antibodies and Sensitive High-Throughput Assays for Serum Screening, PLoS ONE, vol.7, issue.9, p.23049902, 2012.
DOI : 10.1371/journal.pone.0045956.t005

Z. Bai and R. Gust, Breast Cancer, Estrogen Receptor and Ligands, Archiv der Pharmazie, vol.93, issue.3, pp.133-182, 2009.
DOI : 10.1002/ardp.200800174

A. Bracken and K. Helin, Polycomb group proteins: navigators of lineage pathways led astray in cancer, Nature Reviews Cancer, vol.57, issue.11, pp.773-84, 2009.
DOI : 10.1038/nrc2736

P. Perez-mancera, A. Rust, L. Van-der-weyden, G. Kristiansen, A. Li et al., The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma, Nature, vol.486, issue.7402, pp.266-70, 2012.

J. Salazar, M. Guardiola, R. Ferre, B. Coil, C. Alonso-villaverde et al., Association of a polymorphism in the promoter of the cellular retinoic acid-binding protein II gene (CRABP2) with increased circulating low-density lipoprotein cholesterol, Clinical Chemical Laboratory Medicine, vol.45, issue.5, pp.615-635, 2007.
DOI : 10.1515/CCLM.2007.131

C. Willer, S. Sanna, A. Jackson, A. Scuteri, L. Bonnycastle et al., Newly identified loci that influence lipid concentrations and risk of coronary artery disease, Nature Genetics, vol.256, issue.2, pp.161-170, 2008.
DOI : 10.1038/ng.76

S. Kathiresan, C. Willer, G. Peloso, S. Demissie, K. Musunuru et al., Common variants at 30 loci contribute to polygenic dyslipidemia, Nature Genetics, vol.285, issue.1, pp.56-65, 2009.
DOI : 10.1002/ajmg.1320140315

M. Van-greevenbroek, A. Stalenhoef, J. De-graaf, and M. Brouwers, Familial combined hyperlipidemia, Current Opinion in Lipidology, vol.25, issue.3, pp.176-82, 2014.
DOI : 10.1097/MOL.0000000000000068

URL : https://hal.archives-ouvertes.fr/hal-00479401

J. Ding, L. Reynolds, T. Zeller, C. Muller, K. Mstat et al., Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease, Diabetes, vol.64, issue.10, 2015.
DOI : 10.2337/db14-1314

B. Bolstad, R. Irizarry, M. Astrand, and T. Speed, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, vol.19, issue.2, pp.185-93, 2003.
DOI : 10.1093/bioinformatics/19.2.185

N. Jain, J. Thatte, T. Braciale, K. Ley, O. Connell et al., Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays, Bioinformatics, vol.19, issue.15, pp.1945-51, 2003.
DOI : 10.1093/bioinformatics/btg264

A. Kramer, J. Green, J. Pollard, . Jr, and S. Tugendreich, Causal analysis approaches in Ingenuity Pathway Analysis, Bioinformatics, vol.30, issue.4, p.24336805, 2014.
DOI : 10.1093/bioinformatics/btt703

L. Fritsch, R. P. Mathieu, J. Souidi, M. Hinaux, H. Rougeulle et al., A Subset of the Histone H3 Lysine 9 Methyltransferases Suv39h1, G9a, GLP, and SETDB1 Participate in a Multimeric Complex, Molecular Cell, vol.37, issue.1, pp.46-56, 2010.
DOI : 10.1016/j.molcel.2009.12.017